

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Research Article

ISSN 2277-7105

Volume 9, Issue 1, 1117-1122.

SCIENTIFIC VALIDATION OF GANDHAGA SARKKARAI THROUGH FTIR, ICP-OES AND TGA ANALYSIS

Arunkumar G.1*, Murugavel R.2, Anbarasan B.3, Kingsley J.4 and Visweswaran S.5

^{1*}PG Scholar, Department of Gunapadam, National Institute of Siddha, Chennai.

²Department of Nanjunoolum maruthuva needhi noolum, National Institute of Siddha, Chennai.

³Department of Maruthuvam, Govt Siddha Medical College, Chennai.

⁴Department of Gunapadam, National Institute of Siddha, Chennai.

Article Received on 14 Nov. 2019.

Revised on 04 Dec. 2019, Accepted on 26 Dec. 2019,

DOI: 10.20959/wjpr20201-16143

*Corresponding Author Arunkumar G.

PG Scholar, Department of Gunapadam, National Institute of Siddha, Chennai.

ABSTRACT

Plants and metals have been using in Siddha traditional medicine since long years ago. The aim of the present study is to standardize *Gandhaga Sarkkarai*, a Siddha herbo mineral preparation through modern techniques. FTIR, ICP-OES and TGA analysis were done in this study. The results revealed the presence of Alcohol, Alkene, Aromatic, Amine, Ether, Ester and Alkyl halide. Elements such as Calcium, Iron, Sodium, Potassium, Magnesium, Sulphur, Phosphorus and Zinc were present. The stability of the drug is at the range of 50 – 400° C. Thus, the drug *Gandhaga Sarkkarai* is scientifically validated.

KEYWORDS: Gandhaga Sarkkarai, FTIR, ICP-OES, TGA.

INTRODUCTION

There are many traditional medicinal systems in the world of which Siddha system is unique. In Siddha system of medicine, drugs are classified into 32 internal medicines and external medicines. *Gandhaga Sarkkarai* is a calcinated drug fit in internal medicines category. The use of traditional medicines has been gaining importance in recent years. India is blessed with rich flora in which medicinal plants are also present. According to World Health Organization the herbal medicines have been defined as those containing plant parts or plant materials in raw state or processed form containing active principles.^[1] Phytotherapy is

⁵Associate Professor, Department of Gunapadam, National Institute of Siddha, Chennai.

highly diffused in high income countries, but the scientific medical model is more diffused in the developing countries. This contact between the two models has raised the urgent need to compare the immense background of traditional knowledge with the scientific procedures of research and validation. The presence of rich phytochemicals and minerals provides medicinal property for herbs. Herbo mineral formulations have rich potency to cure various diseases. But there is a need to standardize herbal medicines in order to utilise its medicinal value safely and effectively. In this study the drug *Gandhaga Sarkkarai* was analysed according to PLIM guidelines. Gandhaga Sarkkarai is a Siddha herbo-mineral preparation mentioned in *Siddha* text *Anuboga vaithiya navaneetham*, Part VI, indicated for *Megam* (syphilis), Premegham, Kiranthi, Purai (Whole Abscess), Kai kaal kudaichal (Joint pain). [4]

MATERIALS AND METHODS

Collection of raw drugs

Gandhagam was purchased from a well reputed country shop in Parrys, Chennai. Karisalai and Vellai vengayam were freshly collected from Tambaram sanatorium, Tamilnadu.

Identification and Authentication of the drug

Mineral drug was authenticated by Dr.M.Suresh Gandhi, Department of Geology, University of Madras, Chennai. Herbal drugs were identified and authenticated by Dr.D. Aravind M.D(s), Botanist, National Institute of Siddha, Tambaram Sanatorium, Chennai.

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy is a powerful tool for identifying types of chemical bonds in a molecule by producing an infrared absorption spectrum that is like a molecular "fingerprint". This property is used for characterization of organic, inorganic and biological compounds. The band intensities are proportional to the concentration of the compound and hence qualitative estimations are possible. The IR spectroscopy is also carried out by using Fourier transform technique.

The Perkine Elmer Spectrum One Fourier Transform Infrared (FTIR) Spectrometer was used to derive the FTIR Spectra of *Gandhaga Sarkkarai* in Potassium Bromide (KBr) matrix with scan rate of 5 scan per minute at the resolution 4cm-1 in the wave number region 450-4000cm-1. *Gandhaga Sarkkarai* was grounded to fine powder using agate motor and pestle and then mixed with KBr. They were then Pelletized by applying pressure to prepare the specimen (the size of specimen about 13 mm diameter and 0.3 mm in thickness) to recorded

the FT- IR Spectra under Standard conditions. FTIR Spectra were used to determine the presence of the functional groups and bands in the *Gandhaga Sarkkarai*.

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis

ICP, abbreviation for Inductively Coupled Plasma, is one method of optical emission spectrometry. When plasma energy is given to an analysis sample from outside, the component elements (atoms) are excited. When the excited atoms return to low energy position, emission rays (spectrum rays) are released and the emission rays that correspond to the photon wavelength are measured. The element type is determined based on the position of the photon rays and the content of each element is determined based on the ray's intensity.

To generate plasma, first argon gas is supplied to torch coil and high frequency electric current is applied to the work coil at the tip of the torch tube. Using the electromagnetic field created in the torch tube by the high frequency current, argon gas is ionized and plasma is generated. This plasma has high electron density and temperature (10000k) and this energy is used in the excitation-emission of the sample. Solution samples are introduced into the plasma in an atomized state through the narrow tube in the center of the torch tube.

Sample preparation – Microwave Digestion

Inductively Coupled Plasma Spectroscopy techniques are the so-called "wet" sampling methods whereby samples are introduced in liquid form for analysis. Solids cannot be analyzed directly. Such samples should be made into clear aqueous medium quantitatively. 0.37 g of test sample *Gandhaga Sarkkarai* was weighed and transferred into a liner provided with instrument. 9ml of Nitric acid was slowly added, such that no piece of sample sticks on the slide. It was mixed thoroughly and allowed to react for few minutes. The liner was placed in the vessel jacket. The screw cap was closed hand- tight in clockwise direction. The vessel was sealed and placed in the rotor fixed in microwave. The temperature was set to 180°C for 5 minutes and holded at 180°C for least 10 minutes. The vessel was allowed to cool down to a vessel interior temperature below 60°C and to a vessel surface temperature (IR) below 50°C before removing the rotor. The digested sample was made upto 100ml with Millipore water. If visible insoluble particles exist, solution could be filtered through whatmann filter paper. The digested solution was transferred into plastic containers and labelled properly.

In ICP intensity of light emitted when the sample "sprayed or aspirated into an argon plasma" is measured at different wavelengths. The intensity of light at a given wavelength will be

proportional to a particular elemental ion concentration. The intensity is calibrated with known standard concentration. For accurate quantitative results it is necessary to stimulate the sample matrix condition with that of the standard. Each element generally will have many emission lines and the sensitivity is different for each of this wavelength. When more than one element is present it is quite common that some emission lines interfere due to overlapping.

Thermogravimetric Analysis

12.4 mg of sample drug *Gandhaga Sarkkarai* was taken and it was evenly distributed in the bottom of the sample crucible (holder). While filling the crucible, no sample material should be left remaining on the edge of the crucible. The sample crucible was placed on the front-hand sample support and subjected for reading. Good thermal contact between the sample and heat-flux sensor is an indispensable requirement for optimum results.

RESULTS AND DISCUSSION

In the FTIR Spectra analysis, *Gandhaga sarkkarai* sample exhibits the peak value is 3397,1620,1441,1328,1232,1160,1036,765,591 shown in Table 8, at the wave number of having O-H Strong, C=C variable, C=C, C-O medium-weak, C-N medium-weak, C-O strong, C-O Stretch, C-F strong, C-Cl Strong, C-Br Strong. This indicates the presence of some organic functional groups such as Alcohol, Alkene, Aromatic, Amine, Ether, Ester and Alkyl halide.

Table 1: Vibrations And Functional Groups Of Gandhaga Sarkkarai In Ftir.

Wave	Vibrational modes of Gandhaga	Functional
number(cm ⁻¹)	Sarkkarai in IR region	group
3397	O-H Strong, broad	Alcohol
1620	C=C Variable	Alkene
1447	C=C Medium-weak	Aromatic
1328	C-N Medium-weak	Amine
1232	C-O Strong	Ether
1160	C-O Strong	Ester
1036	C-F Strong	Alkyl halide
765	C-Cl Strong	Alkyl halide
591	C-Br Stretch	Alkyl halide

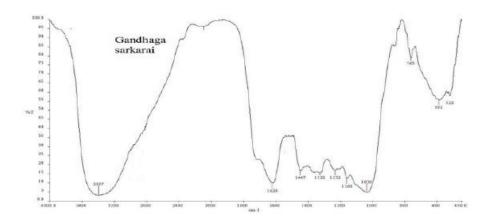


Figure 1: Vibrations of Gandhaga Sarkkarai in FTIR.

The heavy metals like Arsenic, Mecury, Lead and Cadmium were found in below detectable limits. The presence of other elements shows the therapeutic value of *Gandhaga Sarkkarai*.

Table 2: Icp-Oes Study Analysis of Gandhaka Sarkkarai.

S.No	Elements	Wavelength in nm	Mg/L
1	Aluminium	Al 396.152	BDL
2	Arsenic	As 188.979	BDL
3	Calcium	Ca 315.807	502.180mg/L
4	Cadmium	Cd 228.802	BDL
5	Copper	Cu 327.393	BDL
6	Iron	Fe 238.204	01.376mg/L
7	Mercury	Hg 253.652	BDL
8	Potassium	K 766.491	03.821mg/L
9	Magnesium	Mg 285.213	01.104mg/L
10	Sodium	Na 589.592	06.320mg/L
11	Nickel	Ni 231.604	BDL
12	Lead	Pb 220.353	BDL
13	Phosphorus	P 213.617	86.341mg/L
14	Sulphur	S 180.731	41.252mg/L
15	Zinc	Zn206.200	421.018mg/L

Thermo gravimetric analysis of *Gandhaga Sarkkarai* carried out at the maximum of 1300 degree centigrade. The main objective of the study is to evaluate the decomposition and stability limit of the prepared formulation *Gandhaga Sarkkarai*. Prepared formulation *Gandhaga Sarkkarai* seems to be stable at the temperature varying from 57 °C to 400 °C.• Point of decomposition begins when the temperature increases beyond 400 °C. Weight of the final residual matter was observed with 68.04% of residual volume.

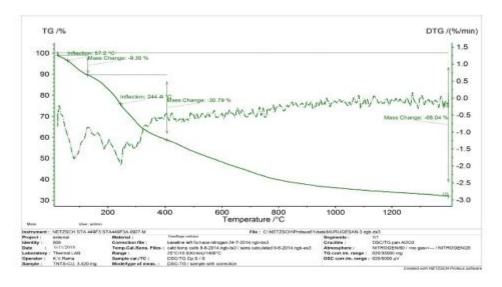


Figure 2: TGA of Gandhaga Sarkkarai.

CONCLUSION

FTIR analysis revealed the presence of some organic functional groups such as Alcohol, Alkene, Aromatic, Amine, Ether, Ester and Alkyl halide. ICPOES study showed that the drug contains Arsenic, Mecury, Lead and Cadmium in below detected level and the presence of other elements having therapeutic value. Stability of *Gandhaga Sarkkarai* at varying temperature ranges from 50 to 400 °C was revealed through TGA.

ACKNOWLEDGMENTS

Authors express gratitude to Director, National Institute of Siddha and faculties of Department of Gunapadam, National Institute of Siddha, Chennai for valuable support.

REFERENCES

- General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine, World Health Organization, Geneva, WHO/EDM/TRM/2000.1 Distr: General Original: English.
- 2. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues, World HealthOrganization, Geneva, 2007.
- 3. Protocol for Testing of Ayurvedic, Siddha and Unani medicines, Pharmacopoeial Laboatory for Indian Medicines, Ghaziabad, Department of Ayush, Ministry of Health and family Welfare, Government of India.
- 4. Abdulla Sayab, Anuboga vaithiya navaneetham, Part VI, Thaamarai Library, Chennai, 46-47.