

# WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 9, Issue 2, 562-597.

Review Article

ISSN 2277-7105

562

# TASTE MASKING OF BITTER DRUGS BY USING ION EXCHANGE RESIN METHOD

Naykodi Pradnya S.\*, Bidkar Shital J., More Komal V. and Dighe Ajinkya D.

Maharashtra India.

Article Received on 05 Dec. 2019,

Revised on 25 Dec. 2019, Accepted on 15 Jan. 2020,

DOI: 10.20959/wjpr20202-16683

\*Corresponding Author Naykodi Pradnya S. Maharashtra India.

#### **ABSTRACT**

The various organoleptic properties such as taste, smell, texture also these are important factor in development of oral dosage forms. The taste is the major factor that affect the patient compliance and product quality. Acceptability of any dosage form mainly depends over its taste i.e. mouth feel. Drug molecule interact with taste receptor on the tongue to give bitter, sweet or other taste sensation, when they dissolve in saliva. The taste buds shows the sensation of taste by signal transduction from the receptor organs. Now a days most of the potent

drugs that are cardiac, analgesic, anti-inflammatory, anti-tubercular, antibacterial, anthalmetics, antimalarial, antiepileptics, anticoagulants, histamine receptor agonist, antithyroids, antineoplastic, antiprotozoal, diuretics, nutritional agents, opioid analgesic, sex hormones, vaccines most of them are bitter in taste. So it become a necessary to develop such a dosage form that is acceptable for its taste by patients especially children or geriatrics. It becomes a challenge for pharmacist to make palatable formulation by masking the bitter taste of the drug.

**KEYWORDS:** Taste, taste buds, taste masking, ion exchange resin, taste masking technique, solid dispersion technique.

#### INTRODUCTION

Taste is the ability to detect the flavour of various substances like food, drug, etc. Taste is important factor governing the patient compliance. Acceptability of any dosage form mainly depends on its taste. Physiologically human can detect 4 kind of taste. Dosage form upon administration it dissolve in saliva and get interact with taste receptor to give taste sensation. The many active ingredients having bitter taste so pediatric patient generally fails to take medication properly. So masking of bitter taste becomes an essential part. To overcome such

a problem, many techniques have been developed to mask the bitter taste of drug, these are coating, inclusion complexes, microencapsulation, granulation, adsorption, prodrug approach, addition of flavours and sweeteners, ion exchange resin, etc.

### Physiology of taste<sup>[1]</sup>

The sense of taste is medicated by taste bud, which are group of 50-100 cells of taste receptor that bundled together in cluster like bananas. They give sensation of taste with the help of sensory neuron to central nervous system in the brainstem. Upon ingestion chemical form medicament dissolve in saliva and chemoreceptors are stimulated, followed by interaction with surface protein gustducin that causing electrical changes within taste cells, which causes the transmission of signal to the brain.

Physiologically human can detect 4 types of taste

- 1. Salty taste:- They are found on the edge of upper front portion of the tongue.
- 2. Sweet taste:- They are located on tip of the tongue.
- 3. Bitter taste:- They are located at back of tongue.
- 4. Umami taste:- Certain amino acid having umami taste (eg. Glutamate, aspartate and related compound).

#### Taste signalling pathway

When tastant (eg. Medicine or food binds or interact with taste receptor taste transduction begins. The tastant bind with G- protein coupled receptor in the cell which triggering release of G-protein called gustducin.

The taste sensation process begins when Gustducin activate the effector enzyme phosphodiesterase (PDE) or phospholipase C beta-2 (PLC). Then there is changes in the intercellular level of second messenger such as cyclic adenosine monophosphate (cAMP), inositol 1,4,5-triphosphate (IP3), diacylglycerol (DAG). These sec. messenger activate ion channel including calcium channel inside the cell and sodium, potassium and calcium channels on extracellular membrane. This ionization causes the cell depolarization and release of neurotransmitters that send nerve to the brain, that carries the signal of bitter taste and taste blockers work by interfering with transduction.

#### Table: Specific area of tongue and threshold concentration for primary taste sensation

| Taste            | Area of tongue | Threshold concentration |
|------------------|----------------|-------------------------|
| Sweet (sucrose)  | Tip            | 0.5                     |
| Salt (NaCl)      | Tip and sides  | 0.25                    |
| Sour (HCl)       | Sides          | 0.007                   |
| Bitter (quinine) | Back           | 0.00005                 |

#### Ideal properties for taste masking process

- 1) Its nature should be physically and chemically inert.
- 2) It involve least no. of equipment and processing steps.
- 3) Excipients should be easily available and economical.
- 4) It should have high margin of safety.
- 5) It should have least manufacturing cost.
- 6) It should be rapid and easy to prepare.
- 7) It should be stable at room temperature.

#### Methods of taste masking

For elimination of bitter taste of orally administered pharmaceuticals various technique and strategies are adopted by pharmaceutical scientist. These are as below-

- 1) Addition of flavouring and sweetening agents.
- 2) Prodrug approach
- 3) Complexation with ion exchange resin
- 4) Inclusion complexation.
- 5) Multiple emulsion technique.
- 6) Taste masking by gelation
- 7) Bitterness inhibitor.
- 8) Polymer coating of drug
- 9) Solid dispersion
- 10) Development of liposome
- 11) Microencapsulation
- 12) Taste masking by adsorption
- 13) Taste making with lipophilic vehicles like lipids and lecithin
- 14) Taste suppressant and potentiators
- 15) Granulation
- 16) miscellaneous

Selection can be made based upon the type of drug, route of administration and compatibility of the active drug with suitable masking agent.

#### 1) Addition of flavouring and sweetening agents

It is a common method of taste masking. But its use is limited to highly bitter actives. Nowadays both natural and synthetic sweeteners, flavours are available for the efficiency of these methods.

#### **Sweeteners**

Different grades of sweeteners are available in order to control the taste. The following table gives a compilation of most common artificial and natural sweeteners with their relative sweetness to sucrose and comments pertaining to each.

Table 1: Relative sweetness of commonly used sweeteners. [2,3]

| <b>Sweetening agents</b> | Relative sweetness | Comment                                            |
|--------------------------|--------------------|----------------------------------------------------|
| Aspartame                | 200                | Not very stable in solution                        |
| Acesulfame               | 137-200            | Bitter after taste if used in higher concentration |
| Potassium cyclamate      | 40                 | Banned                                             |
| Glycyrrhizin             | 50                 | Moderately expensive                               |
| Lactose                  | 0.16               | Large amount required                              |
| Mannitol                 | 0.60               | Negative heat of solution                          |
| Saccharin                | 450                | Unpleasant after taste                             |
| Sucrose                  | 1                  | Most commonly used                                 |
| Sucralose                | 600                | Synergistic sweetening effect                      |

<sup>\*</sup>sucrose is taken as a standard of 1 for comparison

#### Flavouring agent

Flavour is a complex effect of three components taste, odor and feeling factors. Suitable flavours are selected through taste panel studies. Most time blends of flavours were used to taste mask. Now since many flavours are odorous, the brain receives some additional impulses from the olfactory receptors in the nose which coordinate with the gustatory stimuli to produce the mingled sensation that is recognized as the flavour of a substance.

Flavouring agents may be classified as natural and synthetic. Various natural flavours like anise oil, cardamom, wild cherry, lemon, orange and peppermint are available. Various flavours are mentioned below:

Table 2: Shows various natural and artificial flavours. [4]

| Type                   | Example    | Significance                    |
|------------------------|------------|---------------------------------|
| Natural                | Peppermint | Less stable                     |
| Artificial             | Vanilla    | Highly stable                   |
| Natural and artificial | Strawberry | Effective at low concentrations |

Natural and artificial flavours can generally be described to have taste masking effect. The table gives list of taste maskers with basic complementing taste.

Table 3: Shows agents for masking and complementing the basic taste.<sup>[5]</sup>

| Basic taste | Masking agent                                                                                  |
|-------------|------------------------------------------------------------------------------------------------|
| Sweet       | Vanilla, bubble gum, grape                                                                     |
| Acid        | Lemon, lime, orange, cherry, grapefruit                                                        |
| Bitter      | Liquorice, coffee, chocolate, mint, grapefruit, cherry, peach, raspberry, orange, lemon, lime. |
| Metallic    | Berries, mints, grape, marshmallow, gurana.                                                    |

Syrup of cinnamon, orange, citric acid, cherry, cocoa, wild cherry, raspberry, or glycyrrhizin elixir can be used to effectively mask salty and bitter tastes in a number of drug products. The cooling effect of some flavours aids in reducing after-taste perception. Eucalyptus oil is a major constituent of many mouth washes and cough syrup formulations. Menthol, chloroform and various salts are used as flavour adjuncts. They impart flavour and odour of their own to product and have a mild anaesthetic effect on sensory receptor orange associated with taste. Vitamins containing oral solutions are rendered bitterness free by adding sugar, amino acid and apple flavours. Oral composition containing vitamin B-complex, sodium 5-ribonucleotide (inosinate), citrus (orange) flavours or fruit flavours also have remarkably improved taste.

Table 4: Taste masking with flavours, sweeteners, amino acids. [6-17]

| Drug/ active agent     | Type of formulation  | Taste masking agent                        |  |
|------------------------|----------------------|--------------------------------------------|--|
| Eucalyptus oil         | Mouthwash            | Fenchone, bornel or isobornel              |  |
| Benzethonium chloride  | Dentifrices          | Stevia-based sweeteners extracts and       |  |
| Benzemonium chioride   | Delitiffices         | glycerine                                  |  |
| Zinc acetate dehydrate | Lozenges             | Anethol-beta-cyclodextrin complex and      |  |
| Zinc acetate denyurate | Lozenges             | saccharin                                  |  |
| Aspirin                | Effervescent tablets | Sodium phenolate                           |  |
| Thymol                 | Oral rinses          | Anethole, eucalyptol and methyl salicylate |  |
| Thoophylling           | Elixirs              | Sodium saccharin, sodium glutamate and     |  |
| Theophylline           | Elixiis              | vanilla.                                   |  |
| Chlorophoniromino      | Solution             | Sodium bicarbonate, citric acid and orange |  |
| Chloropheniramine      | Solution             | flavour/cream flavour                      |  |
| Ibuprofen              | Syrup                | Sodium saccharin and refined sugar         |  |

| Famotidine                   | Solution                      | Sodium bicarbonate, citric acid, lemon flavour. |  |
|------------------------------|-------------------------------|-------------------------------------------------|--|
| Acetaminophen                | Suspension                    | Sodium bicarbonate, citric acid and cherry      |  |
| Acctaninophen                | Buspension                    | flavours.                                       |  |
| Guaifensin                   | Solution                      | Monosodium glycyrrhizinate                      |  |
| Caffeine                     | Starch, lactose and mannitol. |                                                 |  |
| Anticholesterolemic saponins | -                             | Glycerine, alanine and flavours.                |  |

#### 2) Prodrug approach

A prodrug is a chemically modified inert drug precursor which upon biotransformation liberates the pharmacologically active parent compound. By changing the molecular configuration of the parent molecule, the magnitude of a bitter taste response or taste receptor-substrate adsorption constant may be modified. Prodrugs can be used to increase or decrease the aqueous solubility, mask bitterness, increase lipophilicity, improve absorption, decrease local side effects, and alter membrane permeability of the parent molecule.

Table 5: Example of prodrugs with improved taste. [18-19]

| Parent drug     | Prodrug                             |
|-----------------|-------------------------------------|
| Erythromycin    | Erythromycin propionate             |
| Clindamycin     | Clindamycin palmitate ester         |
| Chloramphenicol | Chloramphenicol palmitate ester     |
| Morphine        | N-oxide derivatives of all morphine |
| Triamcinolone   | Triamcinolone diacetate ester       |
| Gabapentin      | Gabapentin XP13512                  |
| norfloxacin     | Norfloxacin alkyl carbamates        |

# 3) Complexation with Ion exchange resin<sup>[20]</sup>

Ion exchange resin are the substance that are insoluble polymer containing acidic or basic functional group and having ability to exchange counterions within aqueous solution surrounding them. These ion exchange resins are insoluble matrix in form of smaller beads, usually white or yellowish, fabricated from an organic polymer backbone. The material have pores on the surface from where the ions are trapped or released. The ion trapping takes place only with simultaneous release of other ion, these process called ion exchange.

There are various types of ion exchange resin. They having many application due to their high separation capacity, fast ion exchange rate, good electrical conductivity. These resin are also used for various separation, purification and decontamination processes.

The most common example are water softening and water purification. Ion exchange resin having application not only as a drug carriers, but also in formulation and drug delivery and biomedical analysis. These resin are used for overcoming the formulation problems.

Including poor stability and poor dissolution, for taste masking and as a powder processing aid. These are used to modify the drug release the drug release from the formulation and are used substantially in oral, ophthalmic, nasal, transdermal, parentral drug delivery because of their diverse properties and application.

The ion exchange resin are based on cross-linked polystyrene. Cross-linking lowers the ion exchange capacity of the resin and extend the time needed to accomplish ion exchange processes. Particle size also shows influence on resin parameter, smaller the particle size larger outer surface, but causes larger heads loss in the column processes.

#### **Chemistry**

An ion exchange resin is a polymer with electrically charged sites at which one ion replace another. Natural soils contain solids with charged sites that exchange ion and certain minerals called zeolites are good exchangers. The cell wall and cell membrane also carrying a charge so ion exchange also takes place in that.

Synthetic ion exchange resin having porous beads with considerable external pore surface at which ion can attach. The resin are prepared in spherical beads shape and having diameter 0.5 to 1.0mm diameter. These appears solid even under microscope but on a molecular scale the structure is open. When greater the surface area greater is the absorption. When a substance is adsorbed to a resin, no ion is liberated. There are numerous functional groups that having charge, only few are commonly used for man-made ion exchange resin.

#### These are

- COOH, which is weakly ionized to –COO-.
- SO<sub>3</sub>H, which is strongly ionized to –SO<sub>3</sub>-.
- NH<sub>2</sub>, which is weakly attracts proton to form NH<sub>3</sub>+.
- Secondary and tertiary amines that also attract protons weakly.
- NR<sub>3</sub>+ which has strong and permanent charge. (R for organic group).

#### Classification

Ion exchange resins are classified into two main categories:

Cation exchange resin

anion exchange resin

Strong acid

Weak acid

2) weak base

Figure: Classification of ion exchange resin.

#### 1. Cation Exchange Resin

These are prepared by the copolymerization of styrene and divinyl benzene and have sulphonic group (-SO<sub>3</sub>H) introduced into most of the benzene rings. The mechanism of cation exchange process:-

$$Resin$$
— $ex++C+$ — $Resin$ — $C++ex+$ 

Where, resin- indicate a polymer with SO<sub>3</sub>- sites available for binding with exchangeable cation (ex+), and C+ indicate a cation in the surrounding solution getting exchanged.

Cation exchange resin classified as:-

#### A. Strong Acid Cation Exchange Resins

These resin are highly ionized in both the acid (R-SO<sub>3</sub>H) and salt (R-SO<sub>3</sub>Na) form of the sulfonic acid group (-SO<sub>3</sub>H). These can convert a metal salt to the corresponding acid by the reaction:

$$2(R-SO_3H) + NiCl_2 \longrightarrow (R-SO_4) Ni + 2HCl$$

The hydrogen and sodium forms of strong acid resins are highly dissociated, and the exchangeable Na+ and H+ are readily available for exchange over the entire pH range. Consequently, the exchange capacity of strong acid resins is independent of the solution pH.

The resin would be used in the hydrogen form for complete deionization; they are used in the sodium form for water softening (calcium and magnesium removal). After exhaustion, the resin is converted back to the hydrogen form (regenerated) by contact with a strong acid solution, or the resin can be convened to the sodium form with a sodium chloride solution. For the above reaction, hydrochloric acid (HCl) regeneration would result in a concentrated nickel chloride (NiCl<sub>2</sub>) solution.

#### **B.** Weak Acid Cation Exchange Resins

These resins are behave similarly to the weak organic acids that are weakly dissociated. In a weak acid resin the ionizable group is a carboxylic acid (COOH) as opposed to the sulfonic acid group (SO3H) used in strong acid reins. The degree of dissociation of a weak acid resin is strongly influenced by the solution pH. Consequently, resin capacity depends in part on the solution pH. A typical weak acid resin has limited capacity below a pH of 6.0, making it unsuitable for deioinizing acidic metal finishing wastewater.

#### 2. Anion exchange resin

These having exchangeable ion are negatively charged. These are firstly prepared by the chlormethylating the benzene rings of styrene-divinyl benzene copolymer to attach CH2Cl groups then causing to react with the tertiary amines such as triethylamine. The mechanism of anion exchange process:

Anion exchange resin can be classified as:-

#### **Strong Base Anion Exchange Resins**

These resins are highly ionized and used over entire pH range. These resins are used in hydroxide form for deionization. These are reacted with anions in solution a can convert an acid solution and can convert an acid solution to pure water:

$$R-NH_3OH+HCl \longrightarrow R-NH_3Cl+HOH$$

Regeneration with concentrated sodium hydroxide (NaOH) converts the exhausted resin to the OH form.

Weak Base Anion Exchange Resins

These resins are like weak acid resins in that the degree of ionization is strongly influenced by pH. These having exchange capacity above a pH of 7.0. The weak resin does not have OH ion form as does the strong base resin.

$$R-NH_2 + HCl \longrightarrow R-NH_3Cl$$

Consequently, regeneration needs only to neutralize the absorbed acid; it need not provide OH ions. Less expensive weakly basic reagents such as ammonium (NH3) or sodium carbonate can be employed.

Properties of ion exchange resin:-

#### 1. Cross-linking

The amount of cross-linking depends on the proportions of different monomers used in the polymerization step. Practical ranges are 4% to 16%. Resin with very low cross-linking tend to be watery and change diamension markedly depending on which ions are bound. Properties that are interrelated with cross-linking are:

#### **Moisture Content**

A physical property of the ion exchange resins that changes with changes in cross-linkage is the moisture content of the resin. For example, sulfonic acid groups (-SO<sub>3</sub>H) attract water, and this water is tenaciously held each resin particle. The quaternary ammonium group of the anion resins also behave in a similar manner.

#### **Capacity**

The total capacity of an ion exchange resin is defined as the total number of chemical equivalents available for exchange per some unit weight or unit volume of resin. The capacity may be expressed in terms of milliequivalents per day gram of resin or in terms of milliequivalents per millilitre of wet resin.

The more highly cross-linked a resin, the more difficult it becomes to introduce additional functional groups. Sulfonation is carried out after the cross-linking has been completed and the sulfonic acid group (-SO<sub>3</sub>H) are introduced inside the resin particle as well as over its surface. Likewise, the quaternary ammonium groups are introduced after the polymerization has been completed, and they too are introduced both inside the particle as well as on its surface. Fewer functional groups can be introduced inside the particles when they are highly cross-linked, and hence the total capacity on a dry basis drops slightly.

This situation is reversed when a wet volume basis is used to measure the capacity on a resin. Although fewer functional groups are introduced into a highly cross- linked resin, these groups are spaced closer together on a volume basis because the volume of water is reduced

by the additional cross- linking. Thus, the capacity on a wet volume basis increases as cross-linking increases.

#### **Equilibration rate**

Ion exchange reactions are reversible reactions with equilibrium conditions being different ions. Cross- linking has a definite influence on the time required for an ion to reach equilibrium. An ion exchange resin that is highly cross-linked is quite resistant to the diffusion of various ions through it, and hence, the time required to reach equilibrium is much longer.

#### 2. Available capacity

The capacity of an ion exchange is a quantitative measure of its ability to take up exchangeable counter ions and it is therefore of major importance.

#### **Acid-base strength**

The acid or base strength of an exchanger is dependent on the various ionogenic groups incorporated into the resin. Resin-containing sulfonic, phosphoric and carboxylic acid exchanger group have approximate pKa values of < 1,2,3 and 4-6, respectively. Anionic exchanger are quaternary, tertiary, or secondary ammonium groups having apparent pKa values of >13,7-9 or 5-9, respectively. The pKa value of the resin will have a significant influence on the rate at which the drug will be released from resinate in the gastric fluids.

#### Selectivity of the resins for the counter-ion

Resin selectivity is attributed to many factors. Since ion exchange involve electrostatic forces, selectivity at first glance should depend mainly on the relative change and the ionic radius of the (hydrated) ion competing for an exchange site. The extent of adsorption increases with-

- 1. The counter ion that in addition to forming a normal ionic bond with the functional group of an exchanger, also interacts through the influence of van der Waal forces with the resin matrix.
- 2. The counter ion at least affected by complex formation with its co-ion or non-exchange ion.
- 3. The counter ions that induce the greater polarization. These factors, together with the effect of the size and charge of an ion on exhibiting certain selectivity toward a resin, are at best only general rules, and as a consequence there are many exceptions to them.

# **Preparation of resinate**<sup>[21]</sup>

Two methods namely batch process and column process is employed for preparation of drug resinates. These two methods are as follows:

#### 1) Batch process

In this process, an ion exchange resin is added to water in order to prepare its slurry. The accurately weighed amount of drug is then added to this slurry which is followed by stirring to prepare the complex. After the formation of complex, it is washed with water and dried. Mixing time of drug and resin, pH, temperature and swelling of resin and drug: resin ratio is several factors, which can affect the complexation of the drug with resin.

#### 2) Column process

In a typical column procedure the resin is slurried in water and added to a column and backwashed with water to eliminate air pockets and distribute the beads. Acid (0.1 N HCl) is added to convert the acid cycle, followed by washing with water. The cake is then removed from the column, subjected to vacuum filtration and finally dried in an oven. An analogous procedure can be used to adsorb a carboxylated drug on ion exchange resin, using NaOH to convert the resin to basic cycle.

The batch process is always preferred over column process in case of preparation of taste masked ion exchange resinates. The major reason behind this is the fine particle size of the ion exchange resin which does not allow them to be used in columnar operations due to chances of washing away during operations. Higher swelling efficiency in the batch process makes more surface area available for ion exchange.

#### Factors affecting ion exchange resin complexation

Following are the various factors that affect the process of ion exchange resin complexation and thereby needs special considerations.

#### Particle size and form

The size of the resin particles affects the rate of ion exchange reaction. The reduction in size of the resin particles results in decreased time required for the reaction to reach the equilibrium with the surrounding medium.

#### **Porosity and swelling**

Porosity affects the ability of ions to penetrate into resin matrix and thus the efficiency of complexation. The amount of cross-linking substance used in polymerization method

determines the porosity of resin. The amount of swelling is directly proportional to the number of hydrophilic functional group attached to the polymer matrix and is inversely proportional to the degree of DVB cross-linking present in the resin.

#### **Cross-linking**

The cross-linking percentage affects the physical structure of the resin particles. Resins having low degree of cross-linking can take up large quantity of water and thus swell into a soft and gelation structure. Cross-linking also affect the loading efficiency of resin by affecting its porosity and swelling properties.

#### **Exchange capacity**

The exchange capacity refers to the number of ionic sites per unit weight or volume (meq per gram per ml). The exchange determines the amount of drug that can be adsorbed on a resin hence the potency of a complex.

#### Mixing time

The increase in mixing time enhances the swelling of resin which ultimately results in increased drug loading. Lower mixing time results in improper swelling and decreased percentage of drug complexation.

#### Effect of temperature

For certain resins the effect of temperature on drug loading has been reported. High temperature may also cause swelling of resin. Cation exchange resin doesn't get significantly affected by temperature changes unlike anion exchangers.

#### pKa

The pKa value of the resin is having significant influence on the rate at which the drug is released from the resinate in gastric fluids. The pKa of the drug also decides the extent of dissociation and complexation with the resin. If the pH is higher than pKa of drug, the drug remains mostly in nonionized form resulting in decreased complexation. At a certain pH, wherein, both the drug and the resin are ionized in sufficient quantity, resulted in maximum resinate formation.

#### **Stability**

At ordinary temperature and environmental conditions, the ion exchange resins are inert substance and resistant to decomposition through chemical attack. They get degraded and degenerated in presence of gamma rays.

#### **Purity and toxicity**

Resins are not absorbed by body tissue and are safe for human consumption careful purification of resins is required to remove any toxic impurities. In a test conducted for toxicological tolerance, the resins were found to be physiologically inert and non-toxic at recommended dosage.

# Application of ion exchange resin in various formulation related problems<sup>[20]</sup>

#### Taste -masking

Excessive bitterness of the active principal ingredients (APIs) oral formulations is the major taste problem faced by the pharmaceutical industry. Bitterness of formulations can influence selection by physicians and markedly affect patient compliance. Masking of the unpleasant taste of a drug improves compliance and product value. Amongst the numerous available taste-masking methods, ion exchange resins are inexpensive and can be used to develop a simple, rapid and cost-effective method of taste masking.

- Rapid dissolution
- Powder processing aid
- Stability
- Deliquescence
- Disintegration

Table 6: Example of drug masked by using ion exchange resin. [22]

| Drug                  | Resin used       | Matrix      | Functional | Standard ionic |
|-----------------------|------------------|-------------|------------|----------------|
|                       |                  |             | group      | form           |
| amphetamine           | Ambrelite IRP 69 | Styrene DVB | -SO3H      | Na+            |
| Propranolol HCL       | Tulsion 344      | Styrene DVB | -SO3H      | Na+            |
| dextromethorphan      | Tulsion 344      | Styrene DVB | -SO3H      | Na+            |
| Erythromycin stearate | Kyron-T 154      | Styrene DVB | -SO3H      | Na+            |

Table 7: List of commonly used ion exchange resin. [22,23,24,25,26,27,28,29]

| Type of resin | Functional group    | Functional backbone   | Commercial resins                                                                                            |
|---------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|
| Strong anion  | -NR <sub>3</sub>    | Polystyrene-<br>DVB   | Ambrelite IR 400, Dowex 1, Indion 454,<br>Duolite AP 143                                                     |
| Weak<br>anion | -NR <sub>3</sub>    | Polystyrene-<br>DVB   | Ambrelite IR 120, Dowex 2                                                                                    |
| Strong cation | -SO₃H               | Polystyrene-<br>DVB   | Ambrelite IR 120, Dowex 50, Indion 244,<br>Purolite C100, HMR, Kyron –T-154                                  |
| Strong cation | -SO <sub>3</sub> Na | Polystyrene-<br>DVB   | Ambrelite IRP 69, Indion 254, Tulsion-T- 344                                                                 |
| Weak cation   | -СООН               | Methacrylic acid-DVB  | Ambrelite IRC 50, Tulsion- T- 335, 339,<br>Indion 204-234, Purolite C102DR, Kyron-T-<br>104, Doshion P544(R) |
| Weak cation   | -COOK               | Methacrylic acid- DVB | Ambrelite IRP88, Indion 234, Tulsion-T-339,<br>Kyron-T-134.                                                  |

Table 8: Examples of drug masked with ion exchange resin with their exchange capacity.  $^{[30,31]}$ 

| Drug                    | Resin               | Matrix                  | Functional group | Standard ionic form | Exchange capacity |
|-------------------------|---------------------|-------------------------|------------------|---------------------|-------------------|
| Spiramycin              | Ambrelite<br>IRP 64 | Methacrylic             | -СООН            | H+                  | 10meq/kg          |
| Beta lactum antibiotics | Ambrelite<br>IRP 88 | Methacrylic             | -СООН            | K+                  | -                 |
| Norfloxacin             | Tulsion<br>335      | Methacrylic             | -СООН            | H+                  | 10meq/kg          |
| Paracetamol             | Tulsion<br>339      | Methacrylic             | -СООН            | H+                  | -                 |
| Cefuroxime axetil       | Kyron T-<br>104     | Methacrylic             | -СООН            | H+                  | -                 |
| Tramadol HCl            | Kyron T-<br>114     | Methacrylic             | -СООН            | H+                  | -                 |
| Roxithromycin           | Indion 204          | Methacrylic             | -COOH            | H+                  | 10meq/kg          |
| Azithromycin            | Indion 234          | Crosslinked polyacrylic | -СООН            | K+                  | -                 |

Table 9: Patent related taste masking composition including ion exchange resin.  $^{[32-51]}$ 

| Patent No.       | Drug                                  | Inventor, year                            |
|------------------|---------------------------------------|-------------------------------------------|
| WO2012/167878A1  | Ketoprofen                            | LI Michael H.C., Kurmme M., 2012          |
| WO2012/120522A1  | Siladenafil                           | Murpani D., 2012                          |
| WO2011/080683A1  | Anti-retroviral                       | Kakumanu V. K., Isloor S.,<br>Arora, 2011 |
| WO2011/030351A2  | Phosphodiesterase-5(PDE-5) inhibitors | Pilgaonkar P. et al. 2011                 |
| US2011/0300224A1 | Escitalopram                          | Murpani D., Pandora A. 2011               |

| US80088378B2     | Active drug                                            | Hargens R.D. et.al          |  |
|------------------|--------------------------------------------------------|-----------------------------|--|
| WO2010/150221A1  | Pregabilin                                             | Huda I., et. Al. 2010       |  |
| WO2009/074995A1  | Sildenafil citrate                                     | Singh S., et.al, 2009       |  |
| US2008/0044371A1 | Active drug                                            | Hargens R.D. et.al, 2008    |  |
| US2008/0095842A1 | Levocitrizine dihydrochloride                          | Anterkar A.K., et.al, 2008  |  |
| WO2007/146293A3  | Active drug                                            | Becicka B.T., et.al, 2007   |  |
| US2006/0204559   | Dextromethorphan                                       | Bees W.S., et.al, 2006      |  |
| US2006/0115529   | Active drug                                            | Jeong S., et.al., 2006      |  |
| US2005/0036977   | Active drug                                            | Gole D., et.al., 2005       |  |
| WO2005/013934A2  | Active drug Hergens R. D. et.al., 2005                 |                             |  |
| US6,565,877,B1   | Active drug                                            | Mukhargi G, et.,al 2003     |  |
| WO01/70194A1     | Dextromethorphan Bees W.S., et.al,2001                 |                             |  |
| US5032393        | Ranitidine                                             | Douglas S.J. Bird F.R. 1991 |  |
| EP0212641        | Active Amino or amino group Damani N.C., Tasu J.H.1998 |                             |  |
| US6,514,492B1    | Quinolones                                             | Gao R., et al 2001          |  |

Table 10: Patent related taste masking composition of polymer. [52-66]

| Patent no.     | Drug                                                                | Polymer                       | Inventor, Year                        |
|----------------|---------------------------------------------------------------------|-------------------------------|---------------------------------------|
| US8414919      | Cimetidine,                                                         | Amylose                       | Gervais S. et al.,                    |
| 030414919      | Ciprofloxacin                                                       | Starch                        | 2013                                  |
| WO/2012/063257 | Active drug                                                         | Resin                         | Pilgaonkar P. et al, 2012             |
| US8337890      | Morphine, ibuprofen,<br>Codeine                                     | НРМС                          | Mehta K., Tu,<br>Yuhsing, 2012        |
| US8062667      | Oxycodeine, Albuterol, Methylphenidate, Dextromethorphan            | Ambrelite,<br>IRP-69          | Mehta K., Tu,<br>Yushing              |
| US20110136921  | Venlafaxine HCl,<br>Diclofenac sod.                                 | HPMC<br>K100M                 | Dumbre N.T., et al, 2011              |
| WO/2010/127100 | Pseudoephedrin,<br>Chlorpheniramine,<br>Hydrocodone                 | Ambrelite<br>IRP-69           | Mcbermott J.<br>Joseph et al,<br>2010 |
| USP20080118570 | Chlorpheneramine, polistirex, sod. Polysterene sulfonate.           | Ambrelite IRP-69              | Liu Z, et al,<br>2008                 |
| USP20070128269 | Chloroquine and pyrimethamine                                       | HPMC K100M                    | Gervais S. et al,<br>2007             |
| USP20060263431 | Oxycodone, Meperidine, Methadone, Nalbulphire, Opium, Pentazocine.  | Styrene-divinyl benzene       | Maloney A. M.,<br>2006                |
| USP20050265955 | Hydrocodone, bitartrate                                             | Dowex 50 WX8H                 | Raman S.N. et al., 2005               |
| WO/2003/020242 | Dihydrocodeine<br>phosphate, Codeine<br>phosphate, Noscapine<br>HCl | Ambrelite IR-120              | Meadows D., et al                     |
| USP20020164373 | Butorphanol, Fentanyl, Codeine, Dihydrocodeine                      | Hydroxyalkylcellulose/<br>SVB | Maloney A.M.,<br>2002                 |

| USP6258350 | Pilocarpine, Epinephrine | Poly(styrene-divinyl benzene) | Mallick S., 2001           |
|------------|--------------------------|-------------------------------|----------------------------|
| USP5186930 | Phenyl propenolemine     | SVB                           | Kogan P.W., et al, 1993    |
| EP0429732  | Betaxolol, Befumolol     | Ambrelite, dowex              | Jani R. Hams<br>R.G., 1991 |

Table 11: Examples of drug taste masked by ion exchange resins. [67]

| Drug                       | Resin used                                                                |  |  |
|----------------------------|---------------------------------------------------------------------------|--|--|
| Azithromycin               | Dowex, Indion 234, Indion 214, Kyron T114, Indion 204                     |  |  |
| Amphetamine                | Ambrelite IPR69                                                           |  |  |
| Amodiaquine HCl            | Kyron T-134                                                               |  |  |
| Ambroxol HCl               | Indion 244, Indion 204, Indion 234                                        |  |  |
| Buflomedil                 | Ambrelite IPR69, Tulsion T344, Indion 244                                 |  |  |
| Beta lactum ATBT           | Ambrelite IPR88, Rosin 134                                                |  |  |
| Beta histidine HCl         | Tulsion T344                                                              |  |  |
| Chloroquine phosphate      | Polyacrylic acid, ambrelite IPR 88, Indion 234, Indion 294, Tulsion T 339 |  |  |
| Ciprofloxacin              | Lewatit CNP, Tulsion T339, Indion 234, Indion 294                         |  |  |
| clarithromycin             | Carbomer 934, Tulsion 335                                                 |  |  |
| Chlorpheneramine maleate   | Indion CPR 244, Indion CPR 254, Dowex 50                                  |  |  |
| Clopidogrel sulphate       | Water soluble cation exchange resin with sulphonic acid group.            |  |  |
| Cefuroxime axetil          | Kyron T 104, indion 214, Indion 234, Indion 414                           |  |  |
| Cefpodoxime proxitil       | Kyron T 104, duolite AP143                                                |  |  |
| Codeine                    | Ambrelite IPR69                                                           |  |  |
| Cetirizine dihydrochloride | Tulsion 339, tulsion 335                                                  |  |  |
| Dextromethorphan HCl       | Carbomer 934                                                              |  |  |
| Dicyclomine HCl            | Ambrelite IPR120, Dowex 50, Kyron T154, Indion 214, Indion 244            |  |  |
| Dimenhydrinate             | Ambrelite IPR50, Indion 204                                               |  |  |
| Doniperil chloride         | Ambrelite IPR64                                                           |  |  |
| Diphenhydramine HCl        | Indion 234, Tulsion 343, Indion CPR244, Indion 254                        |  |  |
| Dextroamphetamine          | Tulsion                                                                   |  |  |
| Doxylamine succinate       | Indion 234, Indion 204, Indion 414                                        |  |  |
| Diclofenac                 | Ambrelite IRA900                                                          |  |  |
| Diclofenac sodium          | Duolite AP143                                                             |  |  |
| Ephedrine HCl              | Ambrelite IR 120, Indion CPR 244, Indion CPR254                           |  |  |
| Erythromycin               | Carbomer 934, Indion 204, Kyron T114, Doshion P542                        |  |  |
| Erythromycin stearate      | Ambrelite IR 120, Dowex 50, Indion 244, Kyron T154                        |  |  |
| Erdosteine                 | Doshion P544                                                              |  |  |
| Etoricoxib                 | Indion 204, Indion 214, Indion 234, Indion 414                            |  |  |
| Enorfloxacin               | Ambrelite IPR64                                                           |  |  |
| Famotidine                 | Indion 214, Ambrelite IPR69                                               |  |  |
| Fexofenadine HCl           | Indion 234                                                                |  |  |
| floroquinolone             | Tulsion 344, Indion 204                                                   |  |  |
| Levamisol                  | Ambrelite 64, Ambrelite IPR69                                             |  |  |
| Levocitrizine              | Kyron T104, Indion 204, Tulsion335                                        |  |  |

| MetoclopramideIndion 204, Indion 214, Indion 234.Metoclopramide HCIIndion 204Metformin HCIIndion 254Mefenamic acid and paracetamolDoshion 544P, Kyron T134NorfloxacinDoshion P544(R), Indion 204, Tulsion 335, Kyron T104, Ambrelite IRC50OrbifloxacinAmbrelite IPR64, Ambrelite IPR69, Doshion P544(R)OfloxacinTulsion T335, Kyron T114, Indion 204, Indion 214Ondensatron HClIndion 234, Indion 294, Indion 204, Eudragit E100Paroxetrine HClAmbrelite IPR88PseudoephedrineTulsion 7344, Indion 244ParacetamolTulsion 339Propranolol HClTulsionPoracrillin KIndion 234QuinineDowexQuinine sulphateAmbrelite IPRRanitidine HClAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HClAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Indion 234, Doshion T-542ZopicloneKyron T114ZopicloneKyron T135                        | Metronidazole        | Ambrelite IR48, Kyron T114, Indion 234, Kyron T134 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|--|
| Metformin HCIIndion 254Mefenamic acid and paracetamolDoshion 544P, Kyron T134NorfloxacinDoshion P544(R), Indion 204, Tulsion 335, Kyron T104, Ambrelite IRC50OrbifloxacinAmbrelite IPR64, Ambrelite IPR69, Doshion P544(R)OfloxacinTulsion T335, Kyron T114, Indion 204, Indion 214Ondensatron HCIIndion 234, Indion 294, Indion 204, Eudragit E100Paroxetrine HCIAmbrelite IPR88PseudoephedrineTulsion T344, Indion 244ParacetamolTulsion 339Propranolol HCITulsionPoracrillin KIndion 234QuinineDowexQuinine sulphateAmbrelite IPRRanitidine HCIAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HCIAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HCITulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                          | Metoclopramide       | Indion 204, Indion 214, Indion 234.                |  |
| Mefenamic acid and paracetamolDoshion 544P, Kyron T134NorfloxacinDoshion P544(R), Indion 204, Tulsion 335, Kyron T104, Ambrelite IRC50OrbifloxacinAmbrelite IPR64, Ambrelite IPR69, Doshion P544(R)OfloxacinTulsion T335, Kyron T114, Indion 204, Indion 214Ondensatron HClIndion 234, Indion 294, Indion 204, Eudragit E100Paroxetrine HClAmbrelite IPR88PseudoephedrineTulsion T344, Indion 244ParacetamolTulsion 339Propranolol HClTulsionPoracrillin KIndion 234QuinineDowexQuinine sulphateAmbrelite IPRRanitidine HClAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HClAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                 | Metoclopramide HCl   | Indion 204                                         |  |
| Doshion S44P, Kyron T134  Norfloxacin  Doshion P544(R), Indion 204, Tulsion 335, Kyron T104, Ambrelite IRC50  Orbifloxacin  Ambrelite IPR64, Ambrelite IPR69, Doshion P544(R)  Ofloxacin  Tulsion T335, Kyron T114, Indion 204, Indion 214  Ondensatron HCl  Indion 234, Indion 294, Indion 204, Eudragit E100  Paroxetrine HCl  Ambrelite IPR88  Pseudoephedrine  Tulsion T344, Indion 244  Paracetamol  Propranolol HCl  Tulsion  Poracrillin K  Indion 234  Quinine  Dowex  Quinine sulphate  Ambrelite IPR  Ranitidine HCl  Ambrelite IRP88, Ambrelite IPR 69  Risperidone  Ambrelite IRP64  Remacemide HCl  Ambrelite IRP64  Roxythromycin  Ambrelite IRC 50, Purolite C102DR, Indion 214  Ranitidine  Indion 244, Tulsion T344  Rizatriptan benzoate  Indion 204, Indion 214  Rapimelt  Kyron T134  Spiramycin  Ambrelite IRP64  Sumatriptan succinate  Kyron T114  Tramadol HCl  Tulsion T335, Kyron T114  Topiramate  Kyron T114, Kyron T134, Doshion T542  Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone  Kyron T114  Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 | Metformin HCl        | Indion 254                                         |  |
| Ambrelite IRC50 Orbifloxacin Ambrelite IPR64, Ambrelite IPR69, Doshion P544(R) Ofloxacin Tulsion T335, Kyron T114, Indion 204, Indion 214 Ondensatron HCl Indion 234, Indion 294, Indion 204, Eudragit E100 Paroxetrine HCl Ambrelite IPR88 Pseudoephedrine Tulsion T344, Indion 244 Paracetamol Tulsion 339 Propranolol HCl Tulsion Poracrillin K Indion 234 Quinine Dowex Quinine Union E18 Ambrelite IPR Ranitidine HCl Ambrelite IPR Ranitidine HCl Ambrelite IPR Ranitidine HCl Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Tramadol HCl Tulsion T335, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                         |                      | Doshion 544P, Kyron T134                           |  |
| OfloxacinTulsion T335, Kyron T114, Indion 204, Indion 214Ondensatron HClIndion 234, Indion 294, Indion 204, Eudragit E100Paroxetrine HClAmbrelite IPR88PseudoephedrineTulsion T344, Indion 244ParacetamolTulsion 339Propranolol HClTulsionPoracrillin KIndion 234QuinineDowexQuinine sulphateAmbrelite IPRRanitidine HClAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HClAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                                                                                                                                                                                                                    | Norfloxacin          | Ambrelite IRC50                                    |  |
| Ondensatron HCl Indion 234, Indion 294, Indion 204, Eudragit E100  Paroxetrine HCl Ambrelite IPR88  Pseudoephedrine Tulsion T344, Indion 244  Paracetamol Tulsion 339  Propranolol HCl Tulsion  Poracrillin K Indion 234  Quinine Dowex  Quinine Sulphate Ambrelite IPR  Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69  Risperidone Ambrelite IRP64  Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214  Ranitidine Indion 244, Tulsion T344  Rizatriptan benzoate Indion 204, Indion 214  Rapimelt Kyron T134  Spiramycin Ambrelite IRP64  Sumatriptan succinate Kyron T114  Tramadol HCl Tulsion T335, Kyron T114  Topiramate Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                | Orbifloxacin         | Ambrelite IPR64, Ambrelite IPR69, Doshion P544(R)  |  |
| Paroxetrine HCl Ambrelite IPR88 Pseudoephedrine Tulsion T344, Indion 244 Paracetamol Tulsion 339 Propranolol HCl Tulsion Poracrillin K Indion 234 Quinine Dowex Quinine sulphate Ambrelite IPR Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114 Kyron T114 Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542                                                                                                                                                                                                                                                                                                                                                             | Ofloxacin            | Tulsion T335, Kyron T114, Indion 204, Indion 214   |  |
| Pseudoephedrine Paracetamol Paracetamol Tulsion 339 Propranolol HCl Tulsion Poracrillin K Indion 234 Quinine Dowex Quinine sulphate Ranitidine HCl Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Remacemide HCl Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Rapimelt Ryron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Tramadol HCl Tulsion T335, Kyron T134, Doshion T542 Tinidazole Zopiclone Kyron T114 Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Kyron T114 Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Kyron T114                                                                                                                                                                                                                                                                                                                                                                                        | Ondensatron HCl      | Indion 234, Indion 294, Indion 204, Eudragit E100  |  |
| Paracetamol Tulsion 339 Propranolol HCl Tulsion Poracrillin K Indion 234 Quinine Dowex Quinine sulphate Ambrelite IPR Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Paroxetrine HCl      | Ambrelite IPR88                                    |  |
| Propranolol HCl Tulsion Poracrillin K Indion 234 Quinine Dowex Quinine sulphate Ambrelite IPR Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pseudoephedrine      | Tulsion T344, Indion 244                           |  |
| Poracrillin K Quinine Dowex Quinine sulphate Ranitidine HCl Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Remacemide HCl Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Paracetamol          | Tulsion 339                                        |  |
| QuinineDowexQuinine sulphateAmbrelite IPRRanitidine HClAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HClAmbrelite IPR64RoxythromycinAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Propranolol HCl      | Tulsion                                            |  |
| Quinine sulphateAmbrelite IPRRanitidine HClAmbrelite IRP88, Ambrelite IPR 69RisperidoneAmbrelite IRP64Remacemide HClAmbrelite IPR64RoxythromycinAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Poracrillin K        | Indion 234                                         |  |
| Ranitidine HCl Ambrelite IRP88, Ambrelite IPR 69 Risperidone Ambrelite IRP64 Remacemide HCl Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quinine              | Dowex                                              |  |
| Risperidone Remacemide HCl Ambrelite IRP64 Roxythromycin Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Zopiclone Kyron T114 Kyron T114 Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quinine sulphate     | Ambrelite IPR                                      |  |
| Remacemide HCl Ambrelite IPR64 Roxythromycin Ambrelite IRC 50, Purolite C102DR, Indion 214 Ranitidine Indion 244, Tulsion T344 Rizatriptan benzoate Indion 204, Indion 214 Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ranitidine HCl       | Ambrelite IRP88, Ambrelite IPR 69                  |  |
| RoxythromycinAmbrelite IRC 50, Purolite C102DR, Indion 214RanitidineIndion 244, Tulsion T344Rizatriptan benzoateIndion 204, Indion 214RapimeltKyron T134SpiramycinAmbrelite IRP64Sumatriptan succinateKyron T114Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Risperidone          |                                                    |  |
| Ranitidine Indion 244, Tulsion T344  Rizatriptan benzoate Indion 204, Indion 214  Rapimelt Kyron T134  Spiramycin Ambrelite IRP64  Sumatriptan succinate Kyron T114  Tramadol HCl Tulsion T335, Kyron T114  Topiramate Kyron T114, Kyron T134, Doshion T542  Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remacemide HCl       | Ambrelite IPR64                                    |  |
| Rizatriptan benzoate Rapimelt Kyron T134 Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roxythromycin        | Ambrelite IRC 50, Purolite C102DR, Indion 214      |  |
| Rapimelt  Spiramycin  Ambrelite IRP64  Sumatriptan succinate  Kyron T114  Tramadol HCl  Tulsion T335, Kyron T114  Topiramate  Kyron T114, Kyron T134, Doshion T542  Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone  Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ranitidine           | Indion 244, Tulsion T344                           |  |
| Spiramycin Ambrelite IRP64 Sumatriptan succinate Kyron T114 Tramadol HCl Tulsion T335, Kyron T114 Topiramate Kyron T114, Kyron T134, Doshion T542 Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rizatriptan benzoate | Indion 204, Indion 214                             |  |
| Sumatriptan succinate Kyron T114  Tramadol HCl Tulsion T335, Kyron T114  Topiramate Kyron T114, Kyron T134, Doshion T542  Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rapimelt             | Kyron T134                                         |  |
| Tramadol HClTulsion T335, Kyron T114TopiramateKyron T114, Kyron T134, Doshion T542TinidazoleKyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542ZopicloneKyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spiramycin           | Ambrelite IRP64                                    |  |
| Topiramate Kyron T114, Kyron T134, Doshion T542  Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542  Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Kyron T114                                         |  |
| Tinidazole Kyron T114, Kyron T134, Indion 204, Indion 214, Indion 294, Indion 234, Doshion T-542 Zopiclone Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | · ·                                                |  |
| Zopiclone 294, Indion 234, Doshion T-542  Kyron T114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Topiramate           | · •                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tinidazole           |                                                    |  |
| zolpidem Tulsion T335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zopiclone            | Kyron T114                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | zolpidem             | Tulsion T335                                       |  |

# **3) Inclusion complex**<sup>[3,68,69,70]</sup>

In inclusion complex formation, the drug molecule fits into the cavity of a complexing agent i.e., the host molecule forming stable complex. The complexing agent is capable of masking the bitter taste of the drug by either decreasing its oral solubility on ingestion or decreasing the amount of drug particles exposed to taste buds thereby reducing the perception of bitter taste.

Vander Waals forces are mainly involved in inclusion complexes. Beta-cyclodextrin is most widely used complexing agent for inclusion type complexes. It is sweet, nontoxic, cyclic oligosaccharide obtained from starch. The suppression of bitter taste cyclodextrin was in

increasing order of alpha, gamma, and beta cyclodextrin. Cyclodextrins (CDs) are cyclic oligosaccharides made up of six to twelve D-glucopyranose monomers connected at 1 and 4 carbon atoms. The  $\alpha$ CD comprise 6, the  $\beta$ CD 7 and  $\gamma$ CD 8 glucopyranose units.

Table 12: Taste masking by inclusion complex.

| Drug                       | Polymer                     | Result                                    |  |
|----------------------------|-----------------------------|-------------------------------------------|--|
|                            |                             | Cachets prepared using physical mixture   |  |
| Primaquine                 | β cyclodextrin              | of drug and beta cyclodextrin in ratio of |  |
| phosphate                  | p cyclodexum                | 1:25 showed complete bitter taste         |  |
|                            |                             | masking and easy redispersibility         |  |
| Cetirizine                 | α cyclodextrin,             | β-CD is only recommendable CD for taste   |  |
| dihydrochloride            | βcyclodextrin, <sup>γ</sup> | masking oral pharmaceutical               |  |
| umydrocinoride             | cyclodextrin                | formulations.                             |  |
|                            | βcyclodextrin               | Inclusion complexation with βCD was       |  |
| Cefuroxime axetil          |                             | found to be an excellent method in        |  |
| Ceruroxiiile axetii        |                             | attaining palatability by masking         |  |
|                            |                             | undesirable taste of cefuroxime axetil.   |  |
| Thungafan Uydgayynganyl    |                             | Taste masking was achieved by weight      |  |
| Ibuprofen aqueous solution | Hydroxypropyl               | ratio of ibuprofen: hydroxypropyl         |  |
| aqueous solution           | βcyclodextrin               | betacyclodextrin 1:11 to 1:15             |  |

# 4) Multiple emulsion<sup>[5,71]</sup>

A novel technique for taste masking of drugs, the w/o/w or o/w/o type multiple emulsions are vesicular systems in which active ingredients can be entrapped in internal phase. The entrapped substances can be transferred from internal phase to external phase through the 'membrane phase'. These phase controls the release of drug from system. Both w/o/w or o/w/o multiple emulsions of chloroquine phosphate have been prepared and reported to be partially effective in masking the bitter taste of drug.

# 5) Taste masking by gelation<sup>[72]</sup>

Water insoluble gelation on the surface of tablet containing bitter drug can be used for taste masking. Sodium alginate has the ability to cause water insoluble gelation in presence of bivalent metal ions. Tablet of amiprolose hydrochloride have been taste masked by applying an undercoat of sodium alginate and overcoat of calcium gluconate.

### 6) Bitterness inhibitors<sup>[72]</sup>

The development of a specific universal inhibitors for bitter taste has been widely required in the fields of taste physiology and pharmaceutical sciences, but no such inhibitors has been available. One difficulty in discovering of universal inhibitors for bitter taste is that substances that inhibit bitterness of one compound will not influence the bitterness of a second because many different classes of compound impart bitterness.

# 7) Polymer coating of drug<sup>[73]</sup>

This is the simplest and most feasible option to achieve taste masking. The coating acts as a physical barrier to the drug particles, thereby minimizing interaction between the drug and taste buds. Coating of chewable tablets provides excellent taste masking while still providing acceptable bioavailability.

Table 13: Taste masking by polymer coating.

| Drug/ active agents     | Technique                   | Polymer used                                                                                    |  |
|-------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|--|
| Pinaverium bromide      | coating                     | Cellulose or shellac                                                                            |  |
| Propantheline           | coating                     | L-HPC, EC                                                                                       |  |
| bromide                 | Coating                     | L-HFC, EC                                                                                       |  |
| ibuprofen               | Air-suspension coating      | Methacrylic acid copolymer (eudragit)                                                           |  |
| Triprolidine HCl        | Dispersion coating          | HPMC                                                                                            |  |
| dimenhydrinate          | -                           | Eudragit or CMC or starch                                                                       |  |
| Cefeanel daloxanate     | Granulation and             | PVP, EC, HPMC, trisodium citrate                                                                |  |
| HCl                     | coating                     | F V F, EC, HF WC, utsoutum citrate                                                              |  |
| Enoxacin                | Granulation and coating     | HPC, HPMC, EC                                                                                   |  |
|                         | Granulation and             | L-HPC, EC, HMC/EC, HPMC,                                                                        |  |
| Sparfloxacin            | coating                     | titanium dioxide, and sucrose fatty                                                             |  |
|                         | C                           | acid ester mixture.                                                                             |  |
| Ibuprofen               | Rotogranulation and coating | HEC, HPMC                                                                                       |  |
| Aspirin                 | -                           | Cellulose acetate latex and triacetin                                                           |  |
| famotidine              | Rotogranulation and coating | HPC, HPMC, cellulose acetate                                                                    |  |
| Amoxycilline trihydrate | Granulation                 | MCC, L-HPC                                                                                      |  |
| Acetaminophen           | Coating                     | Cellulose acetate, cellulose acetate<br>butyrate, HPC/ cellulose acetate,<br>Eudragit E100, PVP |  |
| Morphine HCl            | Coating                     | Cellulose, Eudragit NE30D                                                                       |  |
| Amiprilose HCl          | Coating                     | Calcium gluconate and sodium alginate                                                           |  |
| Terfenadine             | Mixing                      | Sodium alginate, carrageenan, macrogol-400                                                      |  |
| Beclamide               | Microencapsulation          | Gealtin                                                                                         |  |
| Clarithromycin          | Rotogranulation             | Carbopol, PVP                                                                                   |  |
| Roxithromycin           | Granulation and coating     | PEG, Eudragit L100-55                                                                           |  |
| Nizatidine              | Spray drying                | Eudragit E100                                                                                   |  |
| Cetraxate HCl           | Melt granulation,           | Corn starch, macrogol-6000, Eudragit                                                            |  |
| CCHAZAIC IICI           | Trich granulation,          | Com staren, macrogor-ooo, Eddragh                                                               |  |

582

|                            | coating                       | S-100                                                    |  |
|----------------------------|-------------------------------|----------------------------------------------------------|--|
| Ciprofloxacin              | Microencapsulation            | Eudragit NE 30D, HPC                                     |  |
| Ibuprofen                  | Spray coating                 | Eudragit L300, propylene glycol, mannitol and flavour    |  |
| Bifemelane HCl             | Coating and spraying          | Glycerine monostearate, Eudragit L-30-D-55, PEG, sucrose |  |
| Cefuroxime axetil          | Emulsion- solvent evaporation | Eudragit L-55 and RL                                     |  |
| Pirenzepine and oxybutynin | Dispersion coating            | Eudragit E-100, MCC, HPC                                 |  |
| Diclofeanc                 | Microencapsulation            | EC                                                       |  |
| Nicorandil                 | Coating                       | Crosscarmellose sodium, D-mannitol, lactose              |  |
| Levofloxacin               | Coating                       | Eudragit E100, Cellulose acetate                         |  |

# 8) Solid dispersion technique<sup>[73]</sup>

They are dispersion of one or more active ingredient in an inert carrier or matrix in solid state, and insoluble or bland matrices may be used to mask the taste of bitter drug. Carrier used in dispersion system include povidone, polyethylene glycols, hydroxypropyl methylcellulose, urea, mannitol, ethylcellulose. Various approaches for preparation of solid dispersion are described below:

#### a) Melting method

In this method, the drug or drug mixture and a carrier are melted together by heating. The melted mixture is cooled and solidified rapidly in an ice bath with vigorous stirring. The final solid mass is crushed and pulverized.

#### b) Solvent method

In this method, the active drug and carrier are dissolved in a common solvent, followed by solvent evaporation and recovery of the solid dispersion.

#### c) Melting- solvent method

In this method, the drug in solution is incorporated into a molten mass of polyethylene glycol at a temperature below 70°C without removing the solvent.

Table 14: Taste masking by solid dispersion technique. [74,75,76,77,78,79,80,81,82,83,84,85]

| Drug/ active         | Formulation                 | Method                                                      | Polymer used                                   |
|----------------------|-----------------------------|-------------------------------------------------------------|------------------------------------------------|
| ingredient           | type                        |                                                             | -                                              |
| Artemether           | Rapid disintegrating tablet | Solvent evaporation                                         | Monoammonium glycyrrhizinate pentahydrate      |
| Atenolol             | -                           | Solvent evaporation,<br>hot melt method,<br>kneading method | β cyclodextrin,<br>PEG6000, HPMC E4            |
| Drotoverine          | tablet                      | Melting method                                              | Urea, mannitol                                 |
| Promethazine<br>HCl  | Fast disintegrating tablet  | Solvent evaporation                                         | Eudragit E 100                                 |
| Ondansetron<br>HCl   | Fast dissolving tablet      | Solvent evaporation,<br>Fusion method                       | Eudragit E100                                  |
| Risperidone          | Fast disintegrating tablet  | Solvent evaporation method                                  | β cyclodextrin, crosspovidone, crosscarmellose |
| Cefpodoxime proxetil | Dry syrup                   | Solvent evaporation                                         | Eudragit EPO, Steric acid                      |
| Lamotrigine          | Oral disintegrating tablet  | Kneading method                                             | PVP K-30 and β cyclodextrin                    |
| Rosuvastatine        | Mouth dissolving tablet     | Solvent evaporation                                         | Eudragit EPO                                   |
| Irbesartan           | Fast disintegrating tablet  | Solvent evaporation, kneading                               | Solplus, PEG-6000                              |
| Primaquine phosphate | Rapid disintegrating tablet | Solvent evaporation                                         | Monoammonium glycyrhizzinate pentahydrate      |
| Sumatriptan          | Sublingual tablet           | Melting method                                              | mannitol                                       |

# 9) By liposome formation<sup>[5,72]</sup>

Entrapment method of masking the obnoxious taste of therapeutic agent is to entrap them into liposomes. Liposomes are carrier molecules comprising lipids most often in spherical molecules with several layers of lipid, and the drug or biological agent is carried within the lipid molecules. Oils, surfactant, polyalcohols and lipids effectively increase the viscosity in the mouth due to which the decrease in contact between the bitter medicament and the taste receptors, thus improving the overall taste masking efficiency.

Table 15: Taste masking by liposomes formation.

| Drug                                      | Polymer                                                       | Result                                                                                          |
|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Quinine,<br>denatorium and<br>propranolol | Lipoprotein composed of phosphatidic acid and β-lactoglobulin | PA-LG effectively suppressed the bitter taste of the drugs.                                     |
| Chloroquine phosphate                     | Egg phosphatidyl choline                                      | Chloroquine phosphate was taste masked at pH 7.2 by incorporating into a liposomal formulation. |

### 10) Microencapsulation<sup>[3]</sup>

Microencapsulation is a process in which the active moiety (solid or liquid droplets) is coated with polymeric material or film. Coating the drug particles created a physical barrier between the drug and the taste buds and this taste of active could be masked. Microencapsulation is a valuable technique applicable to protect materials from volatilizing, oxidation as well as to mask their unpleasant taste.

pH independent water insoluble polymer have been used with enteric polymers, inorganic or organic pore formers to achieve taste masking by microencapsulation. Buffering agents are also included in suspending medium to increase taste masking efficiency of microcapsule in oral suspensions. Microecapsulation can be advantageous taste masking strategy for suspensions due to the low particle size distribution of microcapsules that can remain suspended for a longer time. The technique can be efficiently used for applying higher coating levels.

The following techniques are also used for microencapsulation

- Air suspension coating
- Coacervation- phase separation
- Spray drying and spray congealing
- Solvent evaporation
- Multiorifice- centrifungal process
- Pan coating
- Interfacial polymerisation

584

Table 16: Taste masking of bitter drugs by microencapsulation.

| Drug                    | Technique                                  | Polymer                                                         | Result                                                                                                 |
|-------------------------|--------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Ibuprofen               | Air suspension coating                     | Methacrylic acid copolymer                                      | Chewable taste masked tablet having controlled release characteristics by fluid bed coating, obtained. |
| Indeloxazine            | Fluidized bed<br>with side<br>spray method | Hydrogenated oil and surfactant                                 | Taste masking of drug without loss of bioavailability by heat treatment of wax coated microparticles.  |
| Beclamide               | Simple coacervation                        | Gelatin,<br>anhydrous<br>sodiumsulfate<br>coacervating<br>agent | Core: wall ratio 1:1, microencapsulation to mask bitter taste.                                         |
| clarithromycin          | Spray congealing                           | Amino alkyl<br>methacrylate<br>polymer E                        | Taste masking prevented<br>by drug release in the<br>mouth while ensuring<br>rapid release in GIT.     |
| Prednisolone            | Solvent<br>evaporation<br>technique        | Eudragit E 100                                                  | Drug polymer 1:10 microspheres of drug are tasteless, further used for formulation into ODT.           |
| Chloroquine diphosphate | Coacervation phase seperation              | Ethyl cellulose                                                 | Taste masking achieved.                                                                                |

Table 17: Report on taste masking by microencapsulation. [19]

| Drug                          | Category                   | Dosage<br>form     | Coating Material used                 |
|-------------------------------|----------------------------|--------------------|---------------------------------------|
| Acetaminophen                 | Antipyretic                | Dispersible tablet | Cross carmallose                      |
| Caffeine/cimetidine           | Diuretic/<br>Antihistamine | Chewable tablet    | Eudragit RL30D,<br>RS 30D             |
| Ciprofloxacine                | Floroquinolone antibiotics | Oily suspension    | Eudragit NE<br>30D/RL 30D,<br>HPMC    |
| Levofloxacine                 | Floroquine antibiotic      | Suspension         | Eudragit E 100,<br>Cellulose acetate. |
| Sildenafil citrate            | Vasodilator                |                    | Eudragit NE 30D,<br>E100              |
| Chlorpheneramine maleate      | Antihistamine              | Mouth melt tablet  | Ethyl cellulose                       |
| Dextromethorphan hydrobromide | Anti tissue                |                    | PVP-K30                               |

| Acataminanhan         | Antipyretic Chewable |                       | Eudragit E 100,    |
|-----------------------|----------------------|-----------------------|--------------------|
| Acetaminophen         | Antipyretic          | tablet                | Cellulose acetate. |
| Theophylline          | Antinamatic          | Dry                   | Eudragit NE 30D,   |
| тнеорнунше            | Antipyretic          | suspension            | Guargum            |
| Ampicillin trihydrate | Penicillins          | Powders               | Sodium CMC         |
| Nizatidine            | Antihistamine        | Sprnkels              | Eudragit E 100     |
| Dovitromyoin          | Macrolides           | guanonaion            | Eudragit RS 100/   |
| Roxitromycin          | Wacrondes suspension | suspension            | RL 100             |
|                       |                      |                       | Glyceryl           |
| Clarithromycin        | Macrolides           | powders               | monosterate,       |
|                       |                      |                       | Eudragit E 100     |
| Chloroquine           | antimalerial         | Powders               | Eudragit RS 100    |
| diphosphate           | antimaterial         | Towders               | Ludragit K5 100    |
| Metronidazole         | Antiamoebic          | Dry Endmosit E        | Fudragit F         |
| Menomuazote           | Antiamoetic          | suspension Eudragit E |                    |

# 11) Taste masking by adsorption<sup>[72]</sup>

Adsorbates are commonly used with other taste masking technologies. The drug may be adsorbed or entrapped in the matrix of the porous component, which may result in a delayed release of the bitter active during the transit through the oral cavity thereby achieving taste masking.

Adsorbate of bitter tasting drug can be considered as the less saliva soluble versions of these drugs. Adsorption involves preparing a solution of the drug and mixing it with an insoluble powder that will adsorb the drug, removing the solvent, drying the resultant powder, and then using this dried adsorbates in the preparation of the final dosage form. Many substrates like veegum, bentonite, silica gel and silicates can be used for the preparation of adsorbate of bitter drug.

Table 18: Taste masking by adsorption.

| Drug       | Adsorbate                    | Result                                                                 |
|------------|------------------------------|------------------------------------------------------------------------|
| Loperamide | Magnesium aluminium silicate | Further granulating with hydrophobic polymer to achieve taste masking. |

# 12) Taste masking by lipophilic vehicles<sup>[73]</sup>

### Lipids

Oils, surfactants, polyalcohols, and lipids effectively increase the viscosity in the mouth and coat the taste buds, and therefore they are potential taste masking agents. Guaifenesin has improved taste when mixed with carnauba wax and magnesium aluminium silicate and then melt-granulated.

#### **Lecithin and lecithin-like substances**

Formulations with a large excess of lecithin or lecithin like substances are claimed to control bitter taste in pharmaceuticals. Magnesium aluminium silicate with soybean lecithin is used to mask the unpleasant taste of talampicillin HCl.

Table 19: Taste masking with lipophilic vehicle.

| Drug                                                                           | Technique/formulation    | Taste masking agent                                                                |
|--------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------|
| Guaifenesin                                                                    | Melt granulation         | Carnauba wax and magnesium aluminium silicate                                      |
| Cimetidine                                                                     | Granulation              | Glyceryl monosterate                                                               |
| Gabapentin                                                                     | coating                  | Gelatin and mixture of partially hydrogenated soybean oil and glyceryl monosterate |
| Isoprothiolane                                                                 | Spray drying and coating | Hydrogenated oil and HPMC                                                          |
| Acetaminophen,<br>diphenhydramine,<br>carbetapentane citrate,<br>noscapine HCl | syrup                    | Polyglycerine fatty acid ester, glycerine, and chained triglycerides               |
| acetaminophen                                                                  | Spraying/ tablet         | Molten stearyl sterate                                                             |
| Quinine, L-leucine, iso-<br>leucine, caffeine, and<br>papaverine               | -                        | Homogenated suspensions of phosphotidic acid and β-lactoglobulin                   |
| Talampicillin HCl                                                              | -                        | Magnesium aluminium silicate with soybean lecithin                                 |
| Clarithromycin                                                                 | -                        | Glyceryl monostearate and AMCE (amino alkyl methacrylate copolymer E)              |
| Indeloxazine HCl                                                               | Fluidized bed drying     | Hydrogenated oil and surfactants                                                   |

### 13) Taste suppressant and potentiators<sup>[3]</sup>

Lipoproteins are universal bitter taste blockers. Study on animal model showed that lipoproteins composed of phosphatidic acid and lactoglobulin inhibit the taste nerve responses to the bitter substances without affecting those due to sugars, amino acids, salts or acid, potentiators increases the perception of the taste of sweeteners and mask the unpleasant after taste. Cooling and warming agents suppress unpleasant taste of medicament by subjecting taste receptors to extreme sensations to overpower the bitter taste and confuse the brain. A combination of cooling and warming agents was an effective alternative to achieve taste masking.

Table 20: Taste suppressants And Potentiators for taste masking.

| Drug        | Excipients                                 | Result                          |
|-------------|--------------------------------------------|---------------------------------|
| Bromhexine  | Thaumatin and sugar alcohol (e.g.          | Masks bitter after-taste of     |
| Diomiexine  | erythritol and xylitol)                    | Bromhexine                      |
|             | Hydroxy flavanones, their salts and        | Suppressants do not have their  |
| Caffeine    | stereoisomers                              | own taste and work at even very |
|             | stereoisomers                              | low concentration.              |
|             | Cooling agent(e.g. methyl salicylate sweet |                                 |
| Thymol      | and fruity compound) and sweet and         | Mask taste of thymol without    |
| Thymol      | herbaceous aromatic compounds.(e.g.        | using a sugar alcohol.          |
|             | anethole)                                  |                                 |
|             |                                            | Increase the sweetness.         |
|             | Potentiators: thaumatine, neohesperidine   | Perception (4 to 5 times) and   |
| Paracetamol | dihydrochalcone (NHDC), glycyrrhizin,      | mask the secondary taste of     |
|             | and their mixtures.                        | sweetening agents (metallic or  |
|             |                                            | bitter).                        |

# **14)** Granulation<sup>[86-100]</sup>

It is a less expensive, rapid operation and an easily scalable taste masking technology. Polymer, flavours and waxes have been used as granulating agents to achieve the taste masking of bitter medicaments. Liquid and low melting point waxes such as glycerol palmitostearate, glyceryl behenate and hydrogenated castor oil are commonly used ingredients during the granulation to achieve taste masking. Sugar alcohols and flavours are also added in the blend to increase the efficiency of taste masking. Both pH dependent and independent water insoluble polymers, especially the swelling polymers such as MCC and polycarbophil have been employed. During granulation, particle coating may remain incomplete. However, a swelling matrix phenomenon can reduce the overall diffusion of the bitter active. Thus, swellable polymers can give a better taste masking in granulation compared to non swellable polymers.

**Table 21: Taste masking by granulation.** 

| Granulating agent | Drug                                      | Percentage of excipients                                      | Comments                                                                                                |
|-------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Sugar alcohol     | Calcium containing compounds (e.g. CaCO3) | Concentration of sugar alcohol from about 5% to about 40% w/w | Melt granulation with sugar alcohol as the binding agent.                                               |
| Alginic acid      | Erythromycin                              | Drug:polymer ratio of 2:5:1 to 50:1                           | Taste masked granules, which can be formulated as dry syrup suspensions/chewable or dispersible tablets |

| Cyclodextrin                                                                                                                                                                       | Dextromethorphan             | Drug:polymer ratio of between 0.9:1 and 1:25                                                                                                                                                    | Mixing of drug with cyclodextrin followed by granulation; without complexation     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| pH dependent<br>polymer (e.g.<br>Eudragit E-100)<br>and sugar solid<br>support to coat<br>drug-polymer<br>mixture                                                                  | Alprazolam                   | Drug-polymer<br>mixture is 0.1 to<br>300% w/w<br>relative to the<br>weight of the<br>solid support                                                                                              | Less expensive compared to coating                                                 |
| A neutral<br>methacrylic acid<br>ester copolymer<br>and a binder                                                                                                                   | Norfloxacin                  | Polymer comprises 1 to 40% w/w of drug                                                                                                                                                          | Cost effective and<br>environment friendly<br>operations using<br>aqueous solution |
| Polycarbophil                                                                                                                                                                      | Macrolide antibiotic         | -                                                                                                                                                                                               | -                                                                                  |
| Polacrillin<br>potassium                                                                                                                                                           | Ondensetron                  | Polacrillin potassium 1 to 8% w/w and active pharmaceutical 1 to 10% w/w of final composition                                                                                                   | Simple and economic process compared to freeze-drying                              |
| Microcrystalline cellulose                                                                                                                                                         | Ibuprofen                    | Ratio of drug to MCC is 70:30 to 90:10 w/w                                                                                                                                                      | A simpler and more effective process compared to coating                           |
| A water-swellable substance (hydroxypropyl cellulose, carmellose calcium or crosscarmellose sodium) with water or a hydrous alcohol                                                | -                            | -                                                                                                                                                                                               | -                                                                                  |
| Flavours and a combination of a waxy material (e.g. glyceryl behenate or glycerol palmitostearate) and phospholipid (BMI-60) or an intense sweetener derived from fruit flavonoids | Granisetron<br>hydrochloride | 1 to 60 parts of<br>medicament, 10<br>to 90 parts of<br>xylitol, 0.5 to 20<br>parts of a waxy<br>material, and 0.5<br>to 7 parts of an<br>intense<br>sweetener<br>and/or taste<br>masking agent | Cost effective with a rapid operation process                                      |

| (neohesperidine)                                                                                                                              |                                                                          |                                                                                                                                                                 |                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wax- like material<br>(e.g. hydrogenated<br>castor oil) and<br>sugar alcohol (e.g.<br>erythritol)                                             | Levofloxacin and clopidogrel sulfate                                     | Ratio of drug to<br>wax material is<br>1:1 to 1:5 w/w<br>and sugar<br>alcohol at least<br>10% w/w of the<br>total<br>composition                                | Suitable for administration to patient who have difficulty in swallowing compared to pH dependent water insoluble polymer or sugar (lactose) containing formulation that result in the clogging of syringe or tube |
| A polyglycerol ester of polyvalent fatty acid (rapeseed oil with hexaglycerol octastearate and tetraglycerol condensed ricinoleic acid ester) | Vitamin (a water-soluble)                                                | Vitamin 1 to 70% w/w of the total composition and the degree of esterification of a polyglycerol ester of a polyvalent fatty acid is ≥70% with HLB value of ≤4. | -                                                                                                                                                                                                                  |
| An ester of<br>glycerol or a fatty<br>acid (e.g. glyceryl<br>stearate) or a wax<br>(e.g.besswax)                                              | Telithromycin and pristinamycin                                          | Drug and fatty<br>acid present 15<br>to 30% and 60<br>to 80% w/w of<br>the total<br>composition<br>respectively                                                 | Allows release of the active principle in acidic conditions                                                                                                                                                        |
| Hydrogel or a wax                                                                                                                             | Penicillin-based,<br>cephem-based and<br>macrolide- based<br>antibiotics | -                                                                                                                                                               | -                                                                                                                                                                                                                  |

<sup>-</sup> Shows lack of information due to limited details of New Zealand, Chinese and Japanese patents/ patent applications: only abstracts are available.

# 15) Miscellanous<sup>[72]</sup>

#### • Viscosity enhancer

Suspending coated particles may not be efficient enough to achieve taste masking of highly bitter medicaments in liquid orals. Usage of viscosity enhancers in these cases would retard the migration of dissolved medicament from the surface of the solid particle to the suspending medium.

Table 22: Taste masking by viscosity enhancer.

| Drug       | Viscosity enhancer | Result              |
|------------|--------------------|---------------------|
| Azelastine | Hypromellose       | Taste mask achieved |

#### pH modifiers

pH modifying agents are capable of generating a specific microenvironment in aqueous media that can facilitate in-situ precipitation of the bitter drug substance in saliva thereby reducing the overall taste sensation for liquid dosage form is like suspension.

Table 23: Taste masking by pH modifiers.

| Drug          | pH modifier agent | Result                            |
|---------------|-------------------|-----------------------------------|
| Des-quinolone | L-arginine        | L-arginine is used to maintain pH |

#### • By using effervescent agents

Effervescent agents have been shown to be useful and advantageous for oral administration of drugs and have been employed for use as taste masking agents for dosage forms that are not dissolved in water prior to administration.

Table 24: Taste masking by effervescent agents.

| Drug             | Effervescent agent | Result                             |
|------------------|--------------------|------------------------------------|
| Fexofenedine HCl | Sodium bicarbonate | Fast dissolved tablet was prepared |

#### **REFERENCES**

- 1. Sharma Deepak, Kumar Dinesh, Singh Mankaran, Singh Gurmeet, Rathore Mahendra Singh. Taste masking technologies: a novel approach for the improvement of organoleptic property of pharmaceutical active substance. IRJP, 2012; 3(4).
- 2. Patel K, Soni S, Pandya N, Bharadia P., Mouth dissolving film, International journal for pharmaceutical research scholars, 2012; 1: 154-163.
- 3. Karuna Bhalerao, Savita Gambhire, Sushma Singh. Taste masking to improve compliance. Int. Res J Pharm. App Sci., 2013; 3(5): 224-237.
- 4. Sawan M.S., Review on taste masking approaches in oral pharmaceutical dosage form, Lebda medical journal, June 2015; 1: 33-43.
- 5. Jijo Abraham, Flowerlet Mathew, Taste masking of paediatric formulation; a review on technologies, recent trends and regulatory aspects, ISSN-0975-1491, 2014; 6(1).
- 6. Hussein M.M, Barecion S.A. Taste Masking agents for bitterness of volatile oils. US Patent, 1991; 4: 983-394.

- 7. Yokoo T., Hirohata H. Composition for oral cavity. JP 05,000,931, January 8, 1993 [google scholar].
- 8. Eby G.A.,3. Taste masked Zinc acetate composition for oral absorption. US Patent 5,095035, March 10, 1992. [google scholar].
- 9. Fuisz R.C. Taste Masking of Pharmaceutical floss with Phenol. US Patent 5,028,632, July 2, 1991. [google scholar].
- 10. Montengero A.M., Mankoo A.S., Brady E. Taste Masking of Thymol. Can. Pat. Appl. CA2228456, Feb. 13, 1997. [google scholar].
- 11. Maegaki H., Kawasaki Y., Suzuki Y., Theophylline containing liquid agents. JP 05,124,963, May 21, 1993. [google scholar].
- 12. Brideu M.E. Fast Dissolving Dosage form. PCT Int. Appl. W09533446, December 14, 1995. [google scholar].
- 13. Depalmo G. A. composition based on Ibuprofen for oral usage. Eur. Pat. Appl. EP0560207, September 15, 1993. [google scholar].
- 14. Wehling F., Schedule S. Effervescent Dosage forms with Microparticles. US patent 5,503,846, April 2, 1993. [google scholar].
- 15. Fawzy A.A, Clemente E, Anaebonam A. O. Pleasant tasting Aqueous Liquid Composition Of a bitter Tasting Drug. PCT Int. Appl. WO9805312, February 2, 1998. [google scholar].
- 16. Matsubara Y., Kawajiri A., Ishiguro F. Granules with suppressed Bitterness. JP 02, 056, 416, February 26, 1990. [google scholar].
- 17. Watabe S., Kato T., Nagata N/ Saponin and Amino acid containing composition. JP 04,207,161, July 29, 1992. [google scholar].
- 18. Chauhan R, Taste masking: a unique approach for bitter drugs, Journal of stem cell biology and transplantation ISSN 2575-7725, 2017 1(12).
- 19. R. Kalaskar, R.P. Singh, Taste masking: a novel technique for oral drug delivery system, Asian journal of pharmaceutical research and development, ISSN 2320-4850, May-June 2014; 2(3).
- Inderbir Singh, Ashish K. Rehni, Rohit Kalra, Gaurav Joshi, Manoj Kumar, Hassan Y. Aboul-Enein, Ion exchange resin: Drug delivery and therapeutic applications, FABAD J. Pharm. Sci., 2007; 32: 91-100.
- 21. Deepak Kaushik, Harish Dureja, Ion exchange resin complexation technique for pharmaceutical taste masking: an overview, World journal of pharmaceutical research, 4(6): 600-614.

22. Shalini sharma, Shaila lewis, Taste masking technologies: a review, International Journal

of pharmacy and pharmaceutical sciences, 2010; 2(2): 6-13.

- 23. Jyoti wadhawa, Siddharth puri, Taste Masking: A novel approach for bitter and obnoxious drugs, International Journal of Biopharmaceutical and Toxicological Research, 2011; 1(1): 47-60.
- 24. Jha Kumar sajan, sharma Raj udasy, V surender, Taste masking in pharmaceuticals: A update., Journal of pharmacy research, 2008; 1(2): 126-130.
- 25. Swapnil wani, Prashant shamkumar, Ashwini yerawa, formulation of drug resin complex and evaluation of molecular property, scholar research library, 2012; (2): 155-164.
- 26. Desey, Ion exchange resin in microencapsulation, New York: Marcel Dekker Inc, 1980; 150.
- 27. Swarbrik. J., Baylon. S.C. Ion exchange resin. In Encyclopedia of pharmaceutical technologies. Newyork: Marcel Dekker Inc, 1990; 8: 203-126.
- 28. Cristal M., Practicsl Application of ion exchange resin. Chem, 1985; 56: 50-53.
- 29. Saunders I., Ion exchange resins in organic analysis. J. pharm. Pharmacol, 1953; 5: 569-578.
- 30. Vandana patil et.al. Modern taste controlling techniques in pharmaceticals: A review, word journal of pharmacy and pharmaceutical sciences, 2014; 3: 290-316.
- 31. Dr. Indamuddin, mohammad luqman, Ion exchange technology, 2.
- 32. LI Michael HC, Kurmme M. Edible oral strip of wafer dosage form containing ion exchange resin for taste masking. WO 2012/167878 A1, 2012 May 13.
- 33. Murpani D. A taste masked chewable tablet of siladenafil. WO2012/120522A1, 2012.
- 34. Kakumanu VK, Isloor S, Arora VK. Taste masked dosage froms of bitter tasting antiretroviral drugs, WO2011/080683A1, 2011.
- 35. Pilagaonkar P, Sudhir Rustomjee M, Tehmap Gandhi A, Surendrakumar. Taste masked pharmaceutical compositions. WO2011/0300224A1, 2011.
- 36. Murpani D, Pandora A. Taste masked dosage form of pharmaceutically acceptable salt of escitalopram. US2011/0300224A1.
- 37. Hargens RD, Jia Y, slominski G, Vayalakkada S. Taste masked composition of cationic exchange resin. US80088378B2.
- 38. Huda I, Roy K, Talwar M, Jain GK. Taste masked pharmaceutical compositions of pregabalin. WO2010/150221A1, 2010.
- 39. Singh S, Amin D, Goud M. Taste masked chewable compositions of sildenafil citrate. WO2009/074995A1, 2009.

- 40. Hargens RD, Jia Y, Slominski G, Vayalakkada S. Taste masked composition of cationic exchange resin. US2008/0044371A1, 2008.
- 41. Antarkar AK, Mamania HM. Rapidly Disintegrating Taste Masked Compositions and a process for its preparations. US 2008/0095842 A1, 2008.
- 42. Becicka BT, Michalson ET. Improved composition and method for taste masking. WO2007/146293A3, 2007.
- 43. Bess WS, Kulkarni N, Ambike SH, Ramsay MP. Fast dissolving orally consumable films containing an ion exchange resin as a taste masking agent. US 2006/0204559, 2006.
- 44. Jeong S, Kimura S, Fu Y, Park K. Melting tablets having taste masking and sustained release properties. US 20060115529, 2006.
- 45. Gole D, Savall T, Ma L, Greenwood D, Wilkinson PK, Davies J. Taste masked resin and preparation thereof. US 20050036977, 2005.
- 46. Hargens RD, Jia Y, Slominski G, Vayalakkada S. Taste- masked composition of cationic exchange resin. WO2005/013934A2, 2005.
- 47. Mukherji G, Goel S, Arora V. Taste masked compositions. US6565877B1, 2003.
- 48. Gao R, Shao ZJ, Fan AC, Witchey Lakshmanan, Leonore C, Stewart DC. Taste masking of oral quinolone liquid preparation using ion exchange resins. US6, 514, 492B1, 2003.
- 49. Bess WS, Kulkarn N, Ambike SH, Ramsay MP. Fast dissolving orally consumable films containing an ion exchange resin as a taste masking agents. WO01/70194A1, 2001.
- 50. Douglas SJ, Bird FR, Drug adsorbates. US 5032393, 1991.
- 51. Damani NC, Tsau JH. Taste masking compositions. EP0212641, 1988.
- 52. Gervais S, Smith D, Contamin P, Ouzerourou R, Ma My Linh. Sustained drug release composition. US8414919, 2013.
- 53. Pilgaonkar P Sudhir, Rustomjee MT, Gandhi ASK. Sustained release compositions. WO/2012/063257, 2012.
- 54. Mehta K, Tu Yu Hsing. Modified release formulation formulations containing drug-ion exchange resin complexes. US8337890, 2012.
- 55. Mehta K, Tu Yu Hsing. Modified release formulations containing drug-ion exchange resin complexes. US 8062667, 2011.
- 56. Dumbre NT, Avachat AM, Deorkar N, Farina J, Miinea L. Sustained release composition. US20110138921, 2011.

- 57. Mcdermott J Joseph, Hollenbeck R Gary, Attkisson C Linwood. Compositions comprising an antihistamine, antitussive and decongestant in extended release formulations. WO/2010/127100, 2010.
- 58. Liu Z, Chen B, Gao D, Rao MS, Usayapant A. Polymer coated drug-ion exchange resins and methods. USP20080118570, 2008.
- 59. Gervais S, Smith D, Contamin P, Ouzerourou R, Ma My Linh. Sustained drug release compositions. USP20070128269, 2007.
- 60. Maloney AM. Opioid Sustained Release Formulation. USP 20060263431, 2006.
- 61. Raman SN, Cunningham JP, Lang JF. Sustained release preparations. USP 20050265955, 2005.
- 62. Meadows D, Young P, Keyser DJ. Sustained release preparations. WO/2003/020242, 2003.
- 63. Maloney AM. Opioids Sustained release formulation. USP20020164373, 2002.
- 64. Mallick S. Sustained release ophthalmic formulation. USP 6258350, 2001.
- 65. Kogan PW, Pudnic EM, Sequeira JA, Chaudry IA. Sustained release oral preparations. USP5186930; 1993.
- 66. Jani R. Harris RG. Sustained –release compositions containing cation exchange resins and polycarboxylic polymers. EP0429732; 1991.
- 67. Shital J. Bidkar, Rutuja J. Bidkar: A Review: taste masking of bitter pharmaceutical agents by using ion exchange resins, world journal of pharmacy and pharmaceutical sciences, 7(9): 464-482.
- 68. Shah P, Mashru Rajashri, Formulation and evaluation of taste masked oral reconstitutable suspension of primaquine phosphate, AAPS Pharm Sci Tech, 2008; 9(3): 1025-1030.
- 69. Stojanov M, Wimmer R, Larsen K, Study of the inclusion complexes formed between cetirizine and α-,β-,<sup>y</sup>- cyclodextrin and evaluation on their taste masking properties, J Pharm Sci, 2011; 100(8): 3177-3185.
- 70. Patel A, Vavia P, preparation and evaluation of taste masked famotidine formulation using drug/ β-cyclodextrin/ polymer ternary complexation approach, AAPS Pharma Sci Tech, 2008; 9(2): 544-550.
- 71. Vaziri a, Waburton B, slow release of chloroquine phosphate from multiple taste masked w/o/w/ multiple emulsion, Journal of microencapsulation, 1994; 1(6): 641-648.

- 72. Sunirmal Bhattacharjee, Subhabrota Majumdar, Nilayan Guha, Gouranga Dutta, Approaches taken for masking of bitter taste in pharmaceutical products, World journal of pharmacy and pharmaceutical sciences. 5(8): 1752-1764.
- 73. Harmik Sohi, Yasmin Sultana, Roop K. Khar, Taste masking technologies in oral pharmaceutical: recent developments and approaches, Drug Development and Industrial Pharmcy.
- 74. Punit P. Shah, Rajashree C. Mashru, Development and evaluation of artemether taste masked rapid disintegrating tablets with improved dissolution using solid dispersion technique, AAPS Pharm Sci Tech, 2008.
- 75. Soniya Madaan, Atul kumar Gupta, Vipin Sardana, Improvement In Taste and solubility of atenolol by solid dispersion system, The Pharma Innovation, 2012; 1(8).
- 76. Anusha P, Niranjana V. A, Syed Mohammed, Shaik Jilani, Development and evaluation of drotoverine taste masked tablets with improved dissolution efficiency using solid dispersion technique. Indian journal of research in pharmacy and biotechnology.
- 77. Gaurav Sharma, Vivek Kumar Pawar, Garima Garg, Rajendra Awasthi, Taste masking of promethazine hydrochloride using eudragit e100 via solid dispersion technique to develop fast disintegrating tablets, Scholars Research Library, Der Pharmacia Letter, 2010; 2(3): 83-94.
- 78. Alaa A. Abdulqader, Eman B. H. Al-Khedairy, Formulation and evaluation of fast dissolving tablets of taste- masked Ondansetron hydrochloride by solid dispersion, Iraqi J Pharm Sci, 2017; 26(1).
- 79. Santhosh R lyer, R. Sivakumar, P. Siva and C.I. Sajeeth, Formulation and evaluation of fast dissolving tablets of Risperidone solid dispersion, International journal of pharmaceutical, chemical and biological sciences, 2013; 3(2): 388-397.
- 80. Upadhyay L.K., Pande S.V., Chaware V.J., Biyani k.R., Formulation and evaluation of dry syrup containing bitter drug, Pelagia Research Library, ISSN: 0976-8688.
- 81. P.K. Lakshmi, Swetha Reddy, C. Kishore, B. Satish Reddy, Formulation and evaluation of oral disintegrating tablets of Lamotrigine solid dispersion, Iranian journal of pharmaceutical sciences, 2013; 9(1): 1-12.
- 82. Tripura sundari P, Nikitha G, Formulation and evaluation of mouth dissolving tablets of rosuvastatin by taste masking with eudragit epo, international journal of research in pharmaceutical sciences.

- 83. Vidyadhara Suryadevara, Sasidhar R Lankapalli, Sivaprasad Sunkara, Vikas Sakhamuri, Harika Danda, Dissolution rate enhancement of Irbesartan and development of fast dissolving tablets, Egyptian pharmaceutical journal, 2016; 15(3): 150-157.
- 84. Shah PP et al. Formulation and evaluation of primaquine phosphate taste masked rapidly disintegrating tablets, J Pharm Pharmacol, 2008.
- 85. Shailesh T Prajapati, Parth B Patel, Chhagan N Patel, Formulation and evaluation of sublingual tablets containing Sumatriptan succinate. Int J Pharm Investig, 2012 Jul-Sep; 2(3): 162-168.
- 86. Bertelsen, P.E., Olsen, P.M., Nielsen, C.M., Tollenshanaug, M.W. CA2601755, 2006.
- 87. Dabre, R., Nagaprasad, V., Malik, R.: US20070167380, 2007.
- 88. Stroppolo, F., Ciccarello, F., Milani, R., Bellorini, L. US20040115258.
- 89. Habib, W., Moe, D.: US20060147516, 2006.
- 90. Mukherji, G., Kumar, M., Sen, H., Khar, R.K.: WO0135930, 2001.
- 91. John, F.P., Robert, H.C.: NZ528766, 2004.
- 92. Dabhade, H.M., Attarde, P.U.: US 20070036852, 2007.
- 93. Augello, M., Vladyka, R.S., Dell, S.M.: WO9917748, 1999.
- 94. Hideyoshi, K., Yoichi, N., Shuji, Y., Akira, I.: JP9208458, 1997.
- 95. Venkatesh, G.M., Palepu, N.R.: US20026475510, 2002.
- 96. Hiroaki, N., Tatsuya, S., Hideo, K., Akira, K.: TW251495B, 2006.
- 97. Noriko, H., Hironobu, N.: JP143545, 2000.
- 98. Chacornac, I., Probeck, P.: US2004146553, 2004.
- 99. Yoshihisa, O., Hirobumi, D., Masaaki, K.: JP103730, 2000.
- 100. Zelalem Ayenew Worku, Lokesh Kumar, Vibha Puri, Arvind kumar Bansal, Trends in pharmaceutical taste masking technologies: A patent review. February 2009.