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INTRODUCTION 

In 1976, MPTP was incidentally discovered by a chemistry student, 

who was trying to synthesize a synthetic heroin.
[1]

 Others, addicted to 

heroin, replicated this mistake in the early 1980s and developed severe 

PD-like symptoms. Dr. Langston recognized the potential of this toxin 

for creating a valid disease model andsoon identified the effects of 

MPTP administration in non-human primates and described the 

impairments that resembled the motor disabilities of idiopathic PD.
[2] 

In 1986, Sonsalla and Heikkila
[3]

 showed that MPTP could have many 

of the same effects in mice. MPTP is highly lipophilic in nature thus it 

can easily cross the blood brain barrier, where it binds mainly in 

astrocyte lysosomes, and there is general agreement that astrocytes convert MPTP to its toxic 

metabolite, the 1-methyl-4-phenylpyridinium (MPP
+
) ion.

[4,5]
 Evidence indicates that MPTP 

enters the glial cells in the striatum or the substantia nigra, where it is cleaved by the 

monoamine oxidase-B isozyme to form MPP
+
 (l-methyl-4- phenylpyridinium), the neurotoxic 

metabolite. MPP
+
 is known to be anexceptional substrate for the dopamine transporter 

(DAT), which explains its selectivity for dopaminergic neurons.
[6, 7] 

 

The MPTP model has been one of the most accurate models of human idiopathic PD and has 

contributed to the understanding of the course and cause of PD. MPTP is a neurotoxin 

accidentally discovered in laboratory that targets the dopaminergic neurons within the 

nigrostriatal pathway and produces an array of clinical and pathological features that nearly 

simulate idiopathic Parkinsonism symptoms. 

 

Future scope of the study involves improvement in the screening and the evaluation of Anti-

Parkinsonian drugs and developmental processes. MPTP model can prove to be helpful in 
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understanding mechanisms for the death of dopamenergic neurons. Therefore it is essential to 

investigate in MPTP animal model to understand the involvement of mitochondrial 

dysfunction, energy (ATP) depletion, free-radicals production, apoptosis, and glutamate 

excitotoxicity in pathogenesis of PD. 

 

Fate of striatal MPP
+
 

Striatal MPP
+
 is taken up through the dopamine transporter of dopaminergic neurons and 

routed in a worsening fashion to the cell bodies. It is reported that MPP
+
 is an effective 

inhibitor of complex I respiration in isolated mitochondria.
[8]

 MPP
+
 is imported into 

mitochondria where it binds to NADH dehydrogenase in complex I of the oxidative electron 

transport chain inhibiting mitochondrial respiration.
[9,10] 

 

MPP
+
 promotes oxidative stress 

Inhibition of mitochondrial respiration results into increased oxidative stress through the 

production of toxic free radicals.
[11]

 As a result, adenosine triphosphate (ATP) decreases 

rapidly in the striatum and substantianigra pars compacta (SNpc) regions of the brain, which 

are more susceptible to MPTP-induced neurotoxicity.
[12]

 Remarkably, a significant ATP 

depletion can result from as little as 25% inhibition of complex I.
[13] 

Following exposure to 

MPTP or MPP
+
, the hydropyridine or its metabolite is cleared from the brain within 12 hours, 

and the depletion of ATP is no longer evident 24 hours after administration.
[14] 

However, the 

actual neuronal deterioration seems to take a longer period of time.
[15] 

In Parkinson’s disease, 

it is accepted that oxidative stress is critically involved in the dopaminergic neuron death 

since the SN of PD patients exhibits increased levels of oxidized lipids, proteins and DNA 

and a decrease in the levels of glutathione (GSH).
[16] 

There is evidence of oxidative stress in 

the brains of PD patients. Oxidative stress has received the most attention in PD because of 

the potential of the oxidative metabolism of dopamine to yield hydrogen peroxide (H2O2) and 

other reactive oxygen species (ROS). Sufficient data is available which indicates the presence 

of increased levels of malondialdehyde (MDA) and lipid hydroperoxide, products of 

lipidperoxidation in the substantianiagra pars compacta (SNc) region in the brain of PD 

patient.
[17]

  

 

MPTP induced neuronal injury and ATP depletion 

Following MPTP treatment axonal degeneration was evident at all stages of the time course 

in the form of myelin separation, demyelination, localized cytoplasmic shrinkage, 

mitochondrial disruption, or microtubule and neurofilament disturbance. MPTP has been 
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shown to accumulate within the mitochondria as MPP
+
, which, through its interaction with 

complex I, causes a reduction in mouse striatal and midbrain ATP levels.
[18] 

This reduction in 

conjunction with the increased generation of reactive oxygen species most likely results in 

the ultrastructural abnormalities that befall mitochondria and the rest of thecell.Impaired 

mitochondrial function leads to oxidative stress, deficits in ATP synthesis, and α-synuclein 

aggregation, which may contribute to Parkinson’s disease.
[19] 

 

MPTP induced mitochondrial dysfunctioning 

MPP
+
 is subsequently taken up selectively by dopaminergic terminals and concentrated in 

neuronal mitochondria in the SNpc. The mitochondrion is the primary site for the generation 

of cellular energy, regulated by five respiratory chain complexes. Complex I control the 

transfer of one electron from NADH to co-enzyme Q and the transfer of two protons to the 

mitochondrial inter-membrane space, which are then used by complex V to synthesize ATP 

from ADP, the main energy supply of the cell. MPP
+
 binds to NADH dehydrogenase and 

inhibits complex I of the electron transport chain. MPP
+
 can increase leakage of electrons at 

complex I, thereby increasing mitochondrial generation of superoxide. Complex I inhibition 

results in incomplete oxygen reduction and in generation of potentially harmful ROS, 

including superoxide, hydrogenperoxide (H2O2) by action of superoxide dismutases and 

hydroxyl radicals generated by iron-mediated Fenton reaction. MPTP causes irreversible 

inactivation of complex I by generating free radicals.
[20,21,22,23,24]

 The toxicity of MPP
+
 seems 

to result from its inhibition of mitochondrial respiration at the level of complex I, resulting in 

a rapid fall in ATP levels and eventual cell death due to energy failure.
[25] 

In PD, 

mitochondrial Complex I activity decreases in the substantia nigra, an effect which is specific 

to PD. Therefore a mitochondrial complex I defect may cellular degeneration in PD through 

decreased ATP synthesis.
[26] 

 

MPTP treatment up regulate components of the mitochondrial apoptotic cascade 

A complex I defect may aggravate the occurrence of apoptosis. As complex I is a main site of 

proton pumping, a complex I defect in PD may contribute to neuronal susceptibility and may 

lead to apoptosis. It is well proven that a reduction in the mitochondrial membrane potential 

may result in impaired proton pumping, which may lead to the opening of mitochondrial 

permeability transition pores and the release of small mitochondrial proteins that signal for 

the onset of apoptosis. The complex I activity of the mitochondrial respiratory chain 

decreases by 30–40% in the SNc region of the PD patients. The mitochondrial apoptotic 
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cascade has been suggested to play an important role in MPTP induced DAergic 

neurotoxicity.
[27] 

MPTP treatment up regulate components of the mitochondrial apoptotic 

cascade, including cytochrome c and caspase-9 in the substantia nigra (SN). The neuronal 

expression of p35, a potent and irreversible caspase inhibitor, and overexpression of the anti-

apoptotic protein, Bcl-2, conferred a resistance to MPTP-induced neurotoxicity.
[28] 

Mitochondrial apoptotic pathway requires the release of cytochrome c from mitochondria in 

connection with opening of the mitochondrial transition pore. Importantly, MPP
+
 induces the 

opening of the mitochondrial transition pore through the inhibition of complex I and the 

production of ROS.
[29] 

After cytochrome c is released, it then forms a complex with apoptosis 

protease activating factor 1 and pro- caspase-9, which results in caspase-9 activation followed 

by activation of downstream caspases.
[30] 

 

Effects of MPTP on dopamine, a major neurotransmitter of extrapyramidal system 

MPP
+
 stimulates the release of DA.

[31] 
Excessive auto-oxidation of both intracellular and 

extracellular DA results in the formation of cytotoxic quinones and highly reactive •OH. 

Excessive formation of •OH, which has a very short half-life and interacts close to their site 

of generation in vivo
 
can cause cell damage through chain reactions leading to membrane 

lipid peroxidation, alterations in membrane fluidity
[32,33] 

protein cross-linking, and DNA 

damage, which is mediated by base pair mutations
[34] 

Overproduction of •OH, may devastate 

cellular antioxidant defense mechanisms andmay contribute to the death of DAergic 

neurons.
[35] 

 

Effect of MPTP on neurotransmitter level of Glutamate 

There is proof that supports the idea of excitotoxicity contributing to MPTP-induced DAergic 

neuron death. The depletion of cellular ATP caused by inhibition of complex I of the electron 

transport chain in mitochondria results in depolarization of the membrane potential of SNpc 

neurons and an increase in extracellular glutamate levels which, in turn, stimulates N-methyl-

D-aspartate (NMDA) receptors on the DAergic neurons. MPTP treatment leads to an increase 

in the affinity for glutamate by glutamate transporters in the SNpc. The glutaminergic sources 

contributing to these enhanced levels are not known, but could include glia in the surrounding 

areas, enhanced cortical or subthalamic release from axon terminals on DAergic neurons 

and/or arise from an exchange with the glutamate/cystineantiporter, which exchanges 

glutamate from the cytoplasm of the nerve terminal, although the latter remains 

controversial.
[36, 37] 

In particular, the substantianigra receives rich glutamatergic inputs from 
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both the neocortex and subthalamic nucleus. Activation of NMDA receptors allows an influx 

of calcium followed by activation of nitric oxide synthase (NOS), increasing the generation 

of toxic free radicals through the peroxynitrite reaction and thus may contribute to 

Parkinson’s disease. 

 

Role of NO
-
 in MPTP-inducedneurotoxicity 

The stimulation of NMDA receptors by extracellular glutamate results in an elevation of 

intracellular Ca
2+

 via the opening of Ca
2+

 channels due to an inability of the cell to sequester 

and pump out Ca
2+[38] 

Elevation of intracellular Ca
2+

 in SNpc neurons activates neuronal 

nitric oxide synthase (nNOS) and NO is synthesized. NO plays a key role in MPTP-induced 

neurotoxicity. NO reacts with O
2−

 to form peroxynitrite (ONOO
−
).Once formed, ONOO

-
 can 

diffuse over several cell diameters where it can oxidize lipids, proteins, and damage DNA.
[39] 

DNA damage, in turn, activates the DNA damage sensing enzyme poly (ADP-ribose) 

polymerase (PARP).
[40] 

PARP activation induces PAR polymers and depletes nicotinamide 

adenine dinucleotide(NAD
+
) and ATP.

[41] 
ThegenerationofPARpolymers, theribosylation of 

proteins, and the loss of NAD
+
 and ATP signal to the mitochondria induce apoptosis inducing 

factor (AIF) release and translocation.
[42] 

AIF, a mitochondrial flavoprotein that mediates 

caspase-independent cell death translocates from the mitochondria to the nucleus to induce 

DNA fragmentation and nuclear condensation.
[43,44] 

The disassembling of the nuclear 

structure ultimately leads to celldeath.7-Nitroindazole (7-NI), which is a selective inhibitor of 

the neuronal isoform of nitric oxide synthase (NOS) is reported to block MPTP neurotoxicity 

in mice, thus implicating that inhibitors of neuronal NOS might be useful in the treatment of 

Parkinson's disease.
[45] 

 

Precipitation of Inflammation in MPTP-inducedneurotoxicity 

MPTP administration may provoke an inflammatory reaction by initiating permeation of T 

cells into the SN and striatum, activation of the resident brain macrophages, microglia, and 

increased gene expression of the pro-inflammatory cytokines interleukin-1 β (IL-1β), tumor 

necrosis factor α (TNFα), and interferon γ (INFγ).
[46] 

Furthermore, activated microglia can be 

phagocytic and release pro-inflammatory factors such as TNFα, prostaglandin E2 (PGE2), 

INFγ, and ROS such as NO
-
, H2O2, and O

2−
, which are all toxic to neurons.

[47] 
Importantly, 

following MPTP treatment, microglial cell activation occurred prior to DAergic neuron death 

in the SNpc. Furuya and colleagues reported that caspase-11, which is predominantly 

expressed in microglia in the SN, can produce cell death by regulating the expression of 
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cytotoxic cytokines. Caspase-11 null mice were resistant to the neurotoxic effects of an acute 

MPTP treatment.
[48] 

Interestingly, inhibition of microglia activation relieved the degeneration 

of DAergic neurons.
[49] 

Furthermore, NO, a lipophilic radical that is toxic to neurons, is one 

of the pro-inflammatory factors released by microglia. Inducible nitric oxide synthase (iNOS) 

is upregulated in MPTP-treated mice resulting in elevated NO production. The expression of 

iNOS in activated microglia contributes to the death of DAergic neurons in MPTP toxicity
[40, 

50] 
Abnormal protein interactions in the ubiquitin- proteasome system (UPS), which degrades 

short-lived, damaged, and misfolded proteins in an ATP-dependent manner has been 

proposed as a mechanism of DAergic neuron death in the SNpc. In support of this hypothesis, 

systemic administration of a proteasome inhibitor led to degeneration of the nigrostriatal 

pathway.
[51, 52] 

In addition, chronic treatment of MPTP in mice is known to cause a continuing 

inhibition of the UPS and cause degeneration of DAergic neurons in the SN.
[53]  

 

It has been proposed that Lewy bodies develop gradually, appearing first as insoluble 

proteinaceous granules intermingled with filaments that are both ubiquitin and α-synuclein 

positive. Neither Lewy bodies nor inclusions that resemble these bodies were observed when 

mice were acutely or subchronically (subacutely) treated with MPTP.
[54] 

However, chronic 

MPTP administration results in the formation of α-synuclein positive granular aggregates.
[55] 

Chronic and continuous MPTP administration in mice produced inclusion bodies in 

remaining neurons in the SN.
[56] 

Furthermore, chronic treatment of MPTP and probenecid 

(MPTP/P) to mice, showed the accumulations of α-synuclein and ubiquitin in the surviving 

DA neurons.
[57] 

Inflammation has also been proposed as a possible mechanism in the 

pathogenesis of PD. Activated microglia have been observed in the substantianigra, putamen, 

where DA loss is prominent, and also in the hippocampus of patients with PD.
[58] 

which has 

been suggested to be responsible for neuronal dysfunction and cognitive decline in PD. 

Activated microglia produces a variety of inflammatory cytokines, including interleukin (IL)-

2.
[59] 

Increased levels of inflammatory cytokines have also been found in the nigrostriatal 

regions and in cerebrospinal fluid (CSF) of patients with PD.
[60] 

 

Advantages of MPTP model over other neurotoxin models of PD 

Despite numerous efforts to develop progressive toxic protocols in mice, few fully reflect the 

hallmarks of the disease. Mouse models using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) are among the most widely used. MPTP mouse models have shed light on the 

pathophysiology as well as some of the causes of the disease.MPTP model has provided 
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investigators with a relieable and valid model for studying symptomatic relief and 

neuroprotective effect of drugs. MPTP, resembles a number of known environmental 

compounds, including herbicides such as paraquat
 
and the garden insecticide/fish toxin, 

rotenone; both have been shown to induce dopamine (DA) neuron degeneration.
[61, 62, 63, 64]

 As 

compared to other neurotoxins MPTP is highly lipophilic and easily crosses the blood brain 

barrier more readily, where it binds mainly in astrocyte lysosomes, where astrocytes convert 

MPTP to its toxic metabolite, the 1-methyl-4-phenylpyridinium (MPP
+
) ion.

[65] 

 

Rationale for developing MPTP model of PD 

Animal model systems are the closest to humans that we are able to study. In orderto 

understand the pathogenesis of this disease, a number of animal models are developed. With 

using model of toxins, it is possible to develop a progressive model by tempering the toxic 

doses. The principal advantage of MPTP model is that the behavioral syndrome closely 

resembles the clinical features of idiopathic PD. The systemic model has partial 

dopaminergic denervation bilaterally and probably best represents the degree of loss seen in 

all stages of PD, including end-stage disease where some dopaminergic neurons are still 

present. The administration of MPTP to mice results in behavioral alterations that may 

resemble human parkinsonism. For example hypokinesia, bradykinesia, and akinesia can be 

observed through various behavioral analyses including open field activity monitoring, swim 

test, pole test, grip coordination, and rotorod. The MPTP-lesioned mouse model has proven 

valuable to investigate potential mechanisms of neurotoxic induced dopaminergic cell death. 

For example, mechanisms under investigation have included mitochondrial dysfunction, 

energy (ATP) depletion, free-radical production, apoptosis, and glutamate excitotoxicity. In 

addition to its utility in studying acute cell death, the MPTP-lesioned model also provides an 

opportunity to study injury-induced neuroplasticity. The MPTP-lesioned mouse displays the 

return of striatal dopamine several weeks to months after lesioning. MPTP model is well 

suited for therapeutics that interact with remaining dopaminergic neurons, including growth 

factors, neuroprotective agents, and dopamine modulation. The easily reproducible 

dyskinesia in this model allows for extensive investigation of its underlying mechanism and 

treatment. 
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