

Volume 6, Issue 17, 961-996.

Research Article

ISSN 2277-7105

STABILITY INDICATING CHROMETOGRAPHIC METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF MICONAZOLE AND ORNIDAZOLE IN ITS PHARMACEUTICAL DOSAGE FORM BY HPLC

Gameti Nilam Ramanlal¹* and Darpini Patel²

¹M. Pharm, K.B. Rawal College of Pharmacy. ²M. Pharm., Associate Professor K.B. Rawal college of Pharmacy.

Article Received on 27 October 2017,

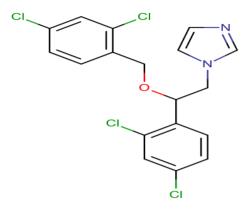
Revised on 17 Nov. 2017, Accepted on 07 Dec. 2017 DOI: 10.20959/wjpr201717-10418

*Corresponding Author Gameti Nilam Ramanlal M. Pharm, K.B. Rawal College of Pharmacy.

ABSTRACT

An accurate, precise and simple HPLC stability indicating assay method for simultaneous estimation of Miconazole and Ornidazole in their pharmaceutical dosage form has been developed and validated. The best separation was achieved on a C_{18} (250 mm × 4.6 mm) i.d., 5µm particles, C_{18} reversed phase column with gradient program, Mobile phase Water: Acetonitrile: Acetic acid (30:70;0.1%v/v), Flow rate 1ml/min, Injection volume 20µl, UV detection was performed at 224 nm. The method was linear over the concentration range of 10-30µg/ml (r=0.999) and 2-6µg/ml(r=0.999) for Miconazole and

Ornidazole, respectively. The limit of detection 0.089µg/ml and 0.457µg/ml for Miconazole and Ornidazole, respectively. The limit of quantification 0.270µg/ml and 1.386µg/ml for Miconazole and Ornidazole, respectively. Forced degradation studies was carried out according to ICH guideline in all condition(Acid hydrolysis, Base hydrolysis, Oxidative degradation, Thermal degradation, Photo degradation).


KEYWORDS: RP-HPLC, Validation, Stability, Miconazole, Ornidazole.

INTRODUCTION

MICONAZOLE

Miconazole is an imidazole antifungal agent that is used topically and by intravenous infusion. Molecular formula for miconazole is $C_{18}H_{14}Cl_4N_2O$ and its molecular weight is 416.13. The mechanism of action of miconazole is Miconazole interacts with 14 α


demethylase, a cytochrome P450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. The IUPAC name of miconazole is 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]-1-Himidazole.

Miconazole.

Ornidazole

Ornidazole is a drug that cures some protozoan infections. It has been investigated for use in Crohn's disease after bowel resection. The molecular formula for ornidazole is $C_7H_{10}ClN_3O_3$ and its molecular weight is 219.625 g/mol. The IUPAC name of ornidazole is 1-chloro-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol. It produce its action by the inhibition of DNA synthesis resulting in to loss of helical structure.

Ornidazole.

MATERIALS AND METHODS

PRELIMINARY ANALYSIS OF DRUGS

Ornidazole

Description

The sample of Ornidazole was observed for its color and texture.

Melting point

The sample of Ornidazole was taken in capillary and place into the melting point apparatus. Observed the melting point and compared with the reference.

IdentificationTest

Potassium Bromide IR disc was prepared using 1mg of Ornidazole on Hydraulic Pellet Press. This disc was scanned in the region of 4000–400cm⁻¹ in FTIR and obtained IR spectrum was compared with the reference spectrum of Ornidazole.

Solubility

The sample of Ornidazole was taken in testtubes and observed for solubility in various solvents like water, methanol, 0.1 N Hcl and 0.1 N NaOH.

Miconazole

Description

The sample of Miconazole was observed for its and texture.

Melting point

The sample of Miconazole was taken in capillary and place into the melting point apparatus. Observed the melting point and compared with the reference.

IdentificationTest

Potassium Bromide IR disc was prepared using 1 mg of Miconazole on Hydraulic Pellet Press. This disc was scanned in the region 0f 4000–400cm⁻¹ in FTIR and obtained IR spectrum was compared with the reference spectrum of Miconazole.

Solubility

The sample of Miconazole was taken in testtubes and observed for solubility in various solvents like water, methanol, 0.1 N Hcl and 0.1 N NaOH.

Development and Validation for Simultaneous Estimation of Ornidazole and MiconazoleBy RP-HPLC

Apparatus and Instruments

Model: Shimadzu HPLC System Pump:-LC-20 AT Column: C_{18} (250 mm × 4.6 mm i.d., 5µm) Detector: UV Detector Software: Spinchrom Analytical balance: Electronic Balance (Shimadzu AUX220)

Reagents and Materials

Ornidazole was procured from Accretion Pharma Miconazole was procured from Accretion Pharma Water-HPLC gradefrom Finar Methanol-HPLC grade from Merk Acetonitrile –HPLC grade from Merck Glacial acetic acid-from Finar

Preparation of standard solutions

(A) Miconazolestandard stock solution: (40µg/mL)

A 40 mg of Miconazole was weighed and transferred to a 100 mL volumetric flask. volume was made up to the mark with methanol. Take 10ml from this solution and transfer to 100ml volumetric flask and volume was made up with the methanol.

(B) Ornidazole standard stock solution: (200µg/mL)

A 20 mg of Ornidazole was weighed and transferred to a 100 mL volumetric flask. volume was made up to the mark with methanol.

(C) Preparation of standard solution of binary mixtures ofMiconazole(4µg/mL) and Ornidazole (20µg/mL)

Take 1 mL from the Miconazole stock solution and 1mL from Ornidazole stock solution and transferred to 10 mL volumetric flask and volume made up to the mark by mobile phase which was used in particular trials.

Selection of wavelength

Standard solution of Miconazole(4µg/mL) and Standard solution of Ornidazole(20µg/mL) in Methanol were scanned between 200-400 nm using UV-visible spectrophotometer.

Both solutions were scanned between 200 - 400 nm.

Wavelength was selected from the overlay spectra of above solutions.

Chromatographic separation

Standard solutions of 2-6µg/ml of Miconazole and 10-30µg/ml of Ornidazole were injected in column with 20µl micro-syringe. The chromatogram was run for appropriate minutes with mobile phase Water: Acetonitrile: Acetic acid (30:70:0.1).

The detection was carried out at wavelength 224nm. The chromatogram was stopped after separation achieved completely. Data related to peak like area, height, retention time, resolution etc were recorded using software.

System suitability test

It is an integral part of chromatographic method. These tests are used to verify that the resolution and reproducibility of the system are adequate for the analysis to be performed. System suitability tests are based on the concept that the equipment, electronics, analytical operations and samples constitute an integral system that can be evaluated as a whole. System suitability testing provides assurance that the method will provide accurate and precise data for its intended use.

Chromatographic conditions

Column: C₁₈ (250 mm × 4.6 mm i.d., 5μm). Mobile Phase: Water: Acetonitrile: Acetic acid (30:70:0.1). Flow Rate: 1.0 ml/min. DetectionWavelength: 224nm. Runtime: 10.0min Injectionvolume: 20.0μl

Stability-Indicating Method

1. Acid degradation

Acid decomposition studies were performed by taking the 1 ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 0.1 N HCl solutions was added and mixed well and put for 4hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole ($20\mu g/mL$) and Miconazole ($4\mu g/mL$).

2. Base degradation

Basic decomposition studies were performed by taking the 1 ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 0.1 N NaOH solutions was added and mixed

well and put for 4 hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole $(20\mu g/mL)$ and Miconazole $(4\mu g/mL)$.

3. Oxidative degradation

Oxidative decomposition studies were performed by refluxing the 1 ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 3% H_2O_2 solutions was added and mixed well and put for 4hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole (20µg/mL) and Miconazole (4µg/mL).

4. Photo Degradation

Photo Degradation studies were performed by weigh powder and exposed to UV chamber for 48 hrs. the powder was removed from the UV chamber for proper dilution and chromatograms were taken.

5. Thermal degradation

Thermal Degradation studies were performed by weigh powder and exposed to dry heat in an oven at 70°C for 4 hrs. The powder was removed from the oven for proper dilution and chromatograms were taken.

Validation of Developed RP-HPLC method

1. Linearity

The linearity for Miconazole and Ornidazole were assessed by analysis of combined standard solution in range of 2-6 μ g/ml and 10-30 μ g/ml respectively, 5,7.5,10,12.5,15 ml solutions were pipette out from the Stock solution of Miconazole(40 μ g/ml) and Ornidazole(200 μ g/ml) and transfer to 100 ml volumetric flask and make up with mobile phase to obtain 2,3,4,5 and 6 μ g/ml and 10,15,20,25 and 30 μ g/ml for Miconazole and Ornidazole respectively In term of slope, intercept and correlation co-efficient value. The graph of peak area obtained verses respective concentration was plotted.

2. Precision

Results should be expressed as Relative standard deviation (RSD) or coefficient of variance.

Repeatability

Standard solution containing Miconazole (4 μ g/ml) and Ornidazole (20 μ g/ml) was injected six times and areas of peaks were measured and % R.S.D. was calculated.

1. Intra-day precision

Standard solution containing (2,4,6 μ g/ml) of Miconazole and (10,20,30 μ g/ml) of Ornidazole were analyzed three times on the same day and % R.S.D was calculated.

2. Inter-day precision

Standard solution containing (2,4,6 μ g/ml) of Miconazole and (10,20,30 μ g/ml) of Ornidazole were analyzed three times on the different day and % R.S.D was calculated.

3. LOD and LOQ

The LOD was estimated from the set of 3 calibration curves used to determination method linearity. The LOD may be calculated as,

$$LOD = 3.3 \times (SD/Slope)$$

Where, SD= Standard deviation of Y-intercepts of 3 calibration curves.

Slope = Mean slope of the 3 calibration curves.

The LOQ was estimated from the set of 3 calibration curves used to determine method linearity. The LOQ may be calculated as,

$$LOQ = 10 \times (SD/Slope)$$

Where, SD = Standard deviation of Y-intercepts of 3 calibration curves.

Slope = Mean slope of the 3 calibration curves.

4. Accuracy

For Miconazole

 $2 \mu g/ml$ drug solution was taken in three different flask label A, B and C. Spiked 80%, 100%, 120% of standard solution in it and diluted up to 10ml. The area of each solution peak was measured at 224 nm. The amount of Miconazole was calculated at each level and % recoveries were computed.

For Ornidazole

 $10 \mu g/ml$ drug solution was taken in three different flask label A, B and C. Spiked 80%, 100%, 120% of standard solution in it and diluted up to 10ml. The area of each solution peak was measured at 224 nm. The amount of Ornidazole was calculated at each level and % recoveries were computed.

5. Robustness

Following parameters were changed one by one and their effect was observed on system suitability for standard preparation.

- 1. Flow rate of mobile phase was changed (± 0.2 ml/min) 0.8 ml/min and 1.2 ml/min.
- 2. pH was changed ((± 0.2).
- 3. Ratio of Mobile phase was changed (±2) Water: Acetonitrile (32:68) and Water: Acetonitrile (28:72).

6. Analysis of formulation

Take Crushed Tablet powder equivalent to 4 mg of Miconazole and 20 mg of Ornidazole was transferred to a 100 ml volumetric flask and made up volume up to the mark with mobile phase. The solution was filtered through Whatman filter paper no. 42 and first few drops of filtrate were discarded. 1 ml of this solution was diluted to 10 ml with mobile phase. The solution was injected 20 μ l. The areas of resulting peak were measured at 224 nm.

RESULT

Stability Indicating RP-HPLC Method Development And Validation For Simultaneous Estimation of Miconazole and Ornidazole In Their Combined Dosage Form. IDENTIFICATION OF DRUGS

Melting point

Melting point of Miconazole: 157-163°C. Melting point of Ornidazole: 76-78°C. This Value is same as that of the literature citation.

Infrared spectroscopy

A pellet of the drug and KBr (Spectroscopic grade) was prepared using hydraulic pellet press at a pressure of 7-10 tones. FT-IR was scanned from 400-4000 cm⁻¹. Following peaks were observed.

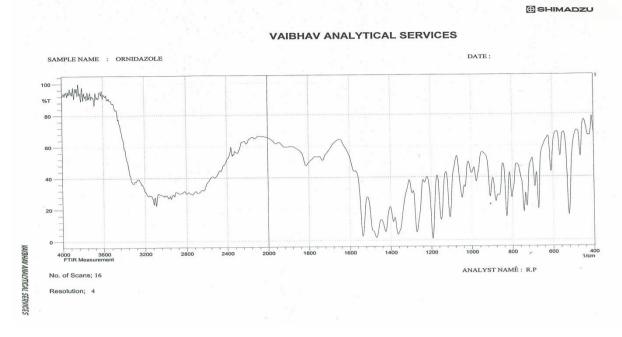


Figure 1: IR Spectra of Sample Ornidazole.

Functional group	Frequency
NO ₂ (Aromatic)	1500
C-N	1200
C=C	1250
C-Cl	750

() SHIMADZU

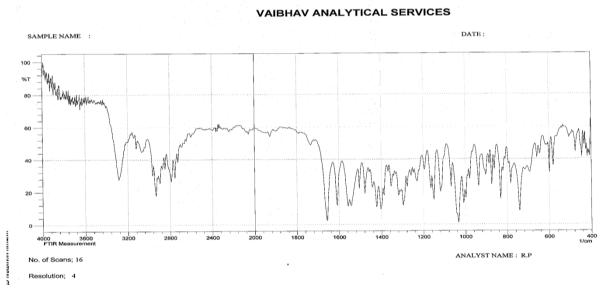


Figure 2: IR Spectra of sample Miconazole.

Functional group	Frequency
C-0	1050
C-N	1300
C=C	1690
C-Cl	730

Vol 6, Issue 17, 2017.

SOLUBILITY STUDY

SOLVENT	SOLUBILIT	Y
SOLVENI	Miconazole	Ornidazole
Water	Insoluble	Slightly soluble
0.1 N NaOH	Insoluble	Slightly soluble
0.1 N HCl	Insoluble	Insoluble
Methanol	Soluble	Freely soluble

Table 1: Solubility of Miconazole and Ornidazole.

Method Development and Validation For Simultaneous Estimation Of Miconazole and Ornidazole By RP-HPLC

Selection of Elution Mode

Reverse phase chromatography was chosen because of its recommended use for ionic and moderate to non-polar compounds. Reverse phase chromatography is not only simple, convenient but also better performing in terms of efficiency, stability and reproducibility. C_{18} column is least polar compare to C_4 and C_8 columns. Here, A 250 x 4.6 mm column of 5.0 µm packing was selected for separation of Miconazole and Ornidazole. Isocratic mode was chosen due to simplicity in application and robustness with respect to longer column stability.

Selection of wavelength

Both Miconazole and Ornidazole show reasonably good response at 224 nm.

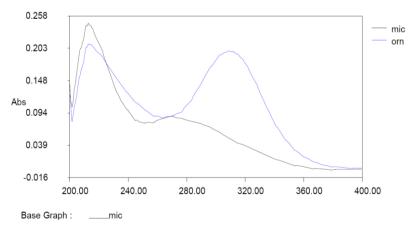


Figure 3: Overlay UV Spectrum of Miconazole and Ornidazoleshowing selection of wavelength detection.

Selection of Mobile Phase

Table 2: Effect of different mobile phase compositions on the separation of Miconazoleand Ornidazole.

Mobile Phase	Flow Rate (ml/min)	Ratio	Retention Time (min) Ornidazole	Retention Time(min) Miconazole	Remark
Water: Methanol	1.0	50:50	-	-	No peak observed
Water: Methanol	1.0	30:70	-	-	No peak observed
Water: Methanol	1.0	10:90	-	-	Still not any peak find
Water: Acetonitrile	1.0	50:50	-	-	Still not any peak observed by replacing the methanol with Acetonitrile
Water: Acetonitrile	1.0	30:70	13.190	-	One peak Observed
Water: Acetonitrile	1.0	30:70	13.053	-	Peak of Ornidazole Confirmed
Water- Acetonitrile	1.0	30:70	-	-	Observed peak was not of Miconazole
Water Acetonitrile	1.0	10:90	8.547	-	Retention time reduced
Water: Acetonitrile: Acetic acid	1.0	30:70:0.05	5.893	7.197	Second peak Observed by using Acetic acid
Water: Acetonitrile: Acetic acid	1.0	30:70:0.05	-	7.223	Peak of Miconazole Confirmed
Water: Acetonitrile: Acetic acid	1.0	40:60:0.05	7.497	8.983	Resolution is not so good
Water: Acetonitrile: Acetic acid	1.0	40:60:0.1	7.803	11.100	Resolution increased but run time is high
Water: Acetonitrile: Acetic acid	1.0	30:70:0.1	4.640	7.633	Run time decreased
Water: Acetonitrile: Acetic acid	1.0	25:75:0.1	3.860	5.127	Resolution decreased

After considering the varying combinations of various mobile phases, Water: Acetonitrile: Acetic acid (30:70:0.1) was finalized as it was showing good peak shapes and a significant amount of resolution.

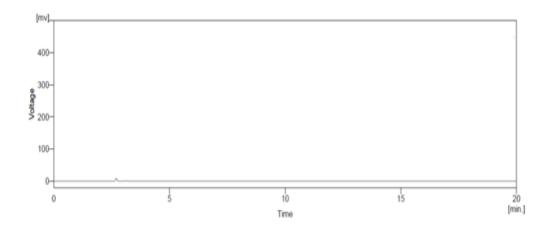


Figure 4: Chromatogram of Miconazole and Ornidazolein water : Methanol (50:50v/v) (Flow rate-1.0 ml/min).

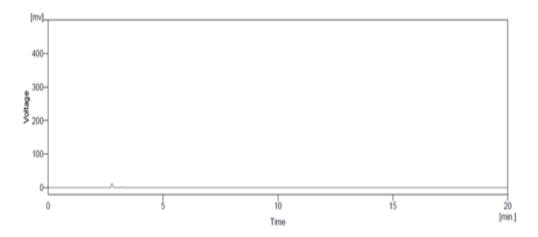


Figure 5: Chromatogram of Miconazole and Ornidazole in water : Methanol (30:70v/v) (Flow rate-1.0 ml/min).

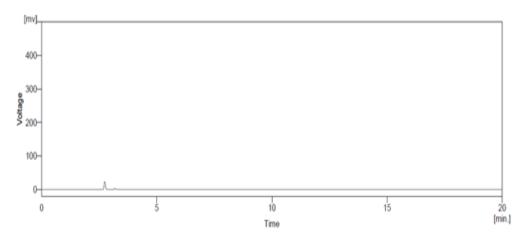


Figure 6: Chromatogram of Miconazole and Ornidazolein water : Methanol (10:90v/v) (Flow rate-1.0 ml/min).

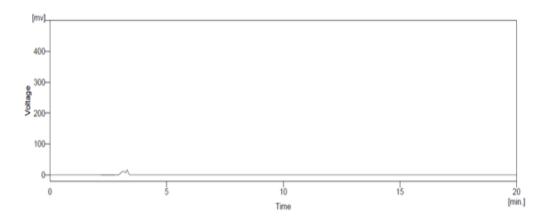


Figure 7: Chromatogram of Miconazole and Ornidazole in water: Acetonitrile (50:50v/v) (Flow rate-1.0 ml/min).

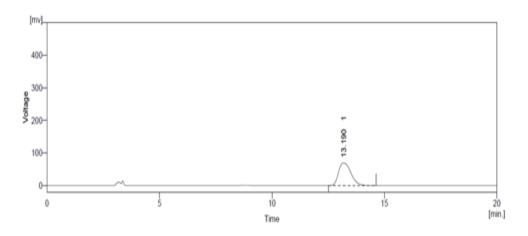


Figure 8: Chromatogram of Miconazole and Ornidazole in water : Acetonitrile (30:70v/v) (Flow rate-1.0 ml/min).

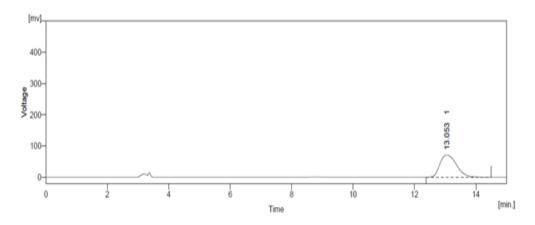


Figure 9: Chromatogram of Ornidazole in water : Acetonitrile (30:70v/v) (Flow rate-1.0 ml/min).

www.wjpr.net

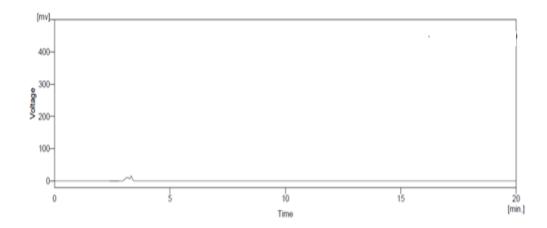


Figure 10: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile (30:70v/v) (Flow rate-1.0 ml/min).

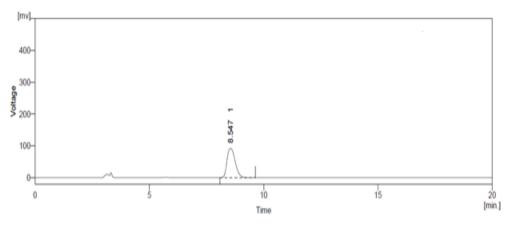


Figure 11: Chromatogram of Ornidazole and Miconazolein water: Acetonitrile (10:90v/v) (Flow rate-1.0 ml/min).

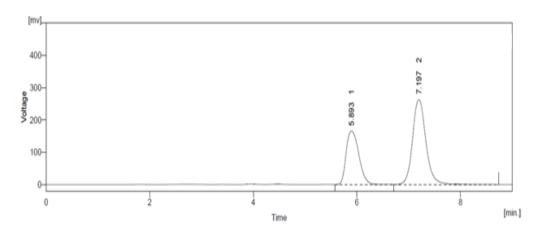


Figure 12: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile: Acetic acid (30:70:0.05 v/v) (Flow rate-1.0 ml/min).

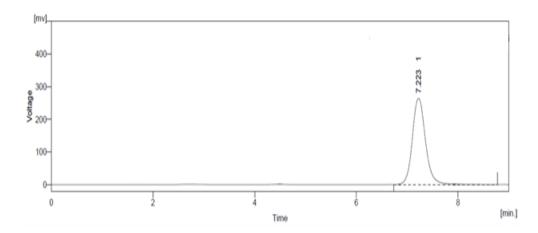


Figure 13: Chromatogram of Miconazole in water: Acetonitrile: Acetic acid (30:70:0.05 v/v) (Flow rate-1.0 ml/min).

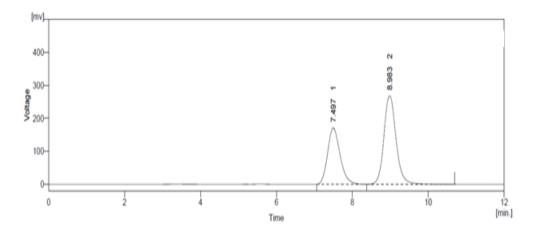


Figure 14: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile: Acetic acid (40:60:0.05 v/v) (Flow rate-1.0 ml/min).

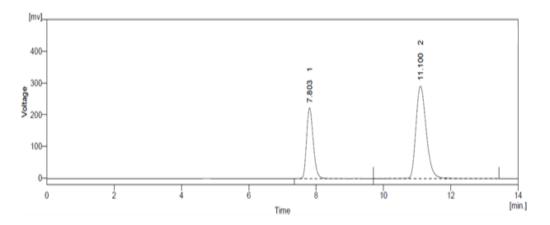


Figure 15: Chromatogram of Ornidazole and Miconazole in water : Acetonitrile: Acetic acid (40:60:0.1 v/v) (Flow rate-1.0 ml/min).

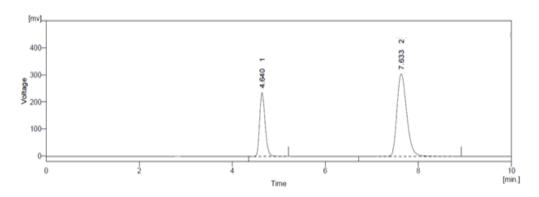


Figure 16: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile: Acetic acid (30:70:0.1 v/v) (Flow rate-1.0 ml/min). (Final).

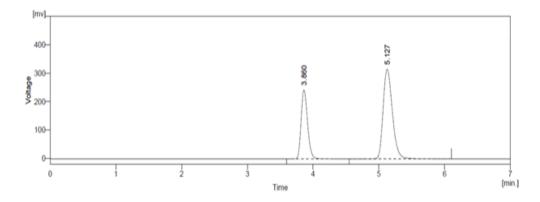


Figure 17: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile: Acetic acid (25:75:0.1 v/v) (Flow rate-1.0 ml/min).

Chromatography

The mobile phase water: Acetonitrile: Acetic acid (30:70:0.1 v/v)was selected because it was found to ideally resolve the peaks with retention time (RT) 4.640 min and 7.633 min for Ornidazole and Miconazole respectively and the same is shown in fig. 6.18.

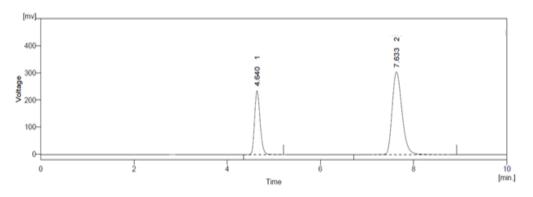


Figure 18: Chromatogram of Ornidazole and Miconazole in water: Acetonitrile: Acetic acid (30:70:0.1 v/v) (Flow rate-1.0 ml/min).

Observed values for system suitability test

- 1. Resolution (Rs): Resolution was observed 9.877, depicted in Table 6.3.
- **2.** Column efficiency (N): Number of plates observed for Ornidazole and Miconazolewere 7058 and 6283, respectively, depicted in Table 6.3.
- **3.** Symmetry factor (S): Tailing factor observed for Ornidazole and Miconazolewere 1.367 and 1.404, respectively, depicted in Table 6.3.

Table 3: Results for system suitability test.

Parameters	Data observed		
rarameters	Ornidazole	Miconazole	
Theoretical plates per column	7058	6283	
Symmetry factor/Tailing factor	1.367	1.404	
Resolution	9.877		

Stability Indicating Method for Simultaneous Estimation of Ornidazole and Miconazole done By RP-HPLC

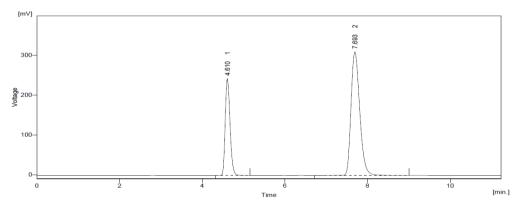


Figure 19: Chromatogram of stability study of Miconazole and Ornidazole Standard.

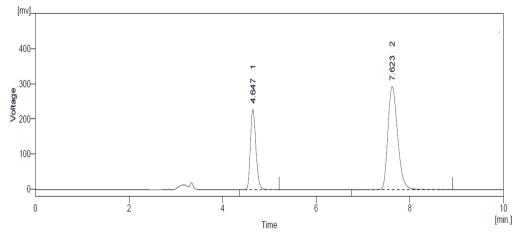


Figure 20: Chromatogram of stability study of Miconazole and Ornidazole sample.

1. Acid degradation

Acid decomposition studies were performed by taking the 1 ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 0.1 N HCl solutions was added and mixed well and put for 4hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole ($20\mu g/mL$) and Miconazole ($4\mu g/mL$).

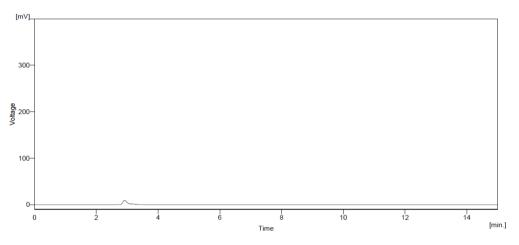


Figure 21: Chromatogram of Acid Degradation Blank.

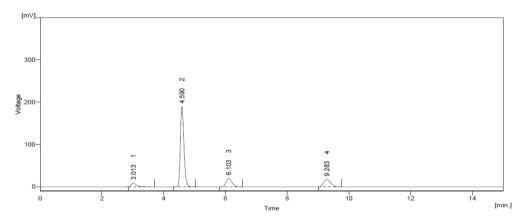
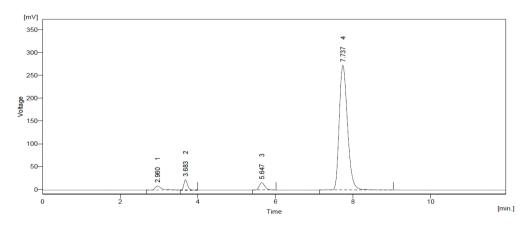
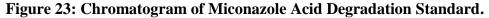




Figure 22: Chromatogram of Ornidazole Acid Degradation Standard.

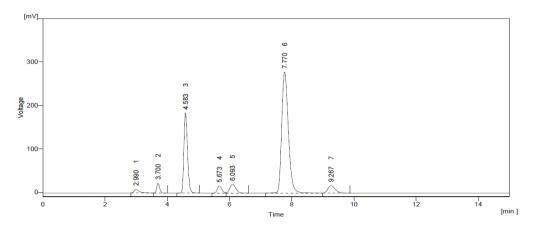


Figure 24: Chromatogram of Miconazole and Ornidazole Acid Degradation Sample.

2. Base degradation

Basic decomposition studies were performed by taking the 1ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 0.1 N NaOH solutions was added and mixed well and put for 4 hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole ($20\mu g/mL$) and Miconazole ($4\mu g/mL$).

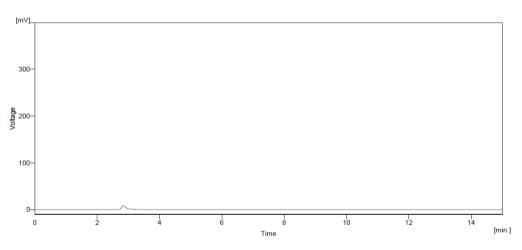
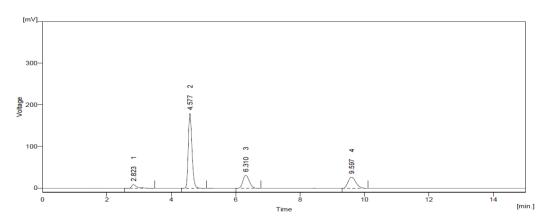
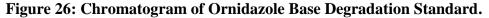




Figure 25: Chromatogram of Base Degradation Blank.

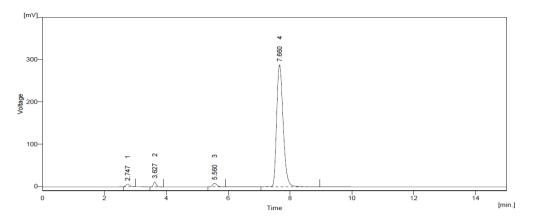


Figure 27: Chromatogram of Miconazole Base Degradation Standard.

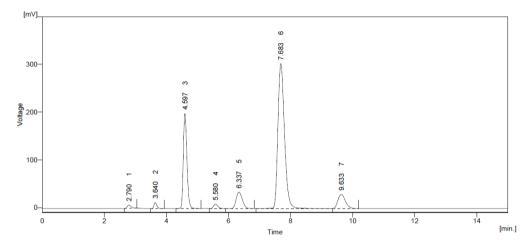
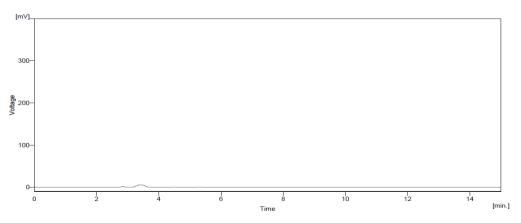



Figure 28: Chromatogram of Miconazole and Ornidazole Base Degradation Sample.

3. Oxidative degradation

Oxidative decomposition studies were performed by taking the 1 ml of stock solution was transferred in to 10 ml of volumetric flask. 2 ml of 3% H_2O_2 solutions was added and mixed well and put for 4hrs at Room temperature. Then the volume was adjusted with diluent to get Ornidazole (20µg/mL) and Miconazole (4µg/mL).

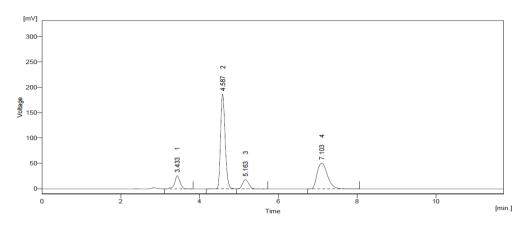


Figure 30: Chromatogram of Ornidazole Oxidation Degradation Standard.

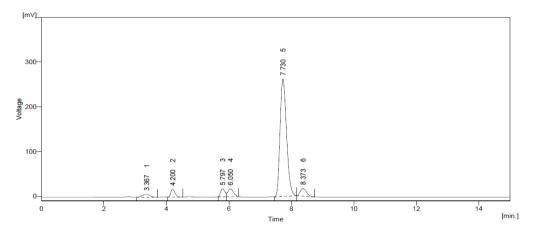


Figure 31: Chromatogram of Miconazole Oxidation Degradation Standard.

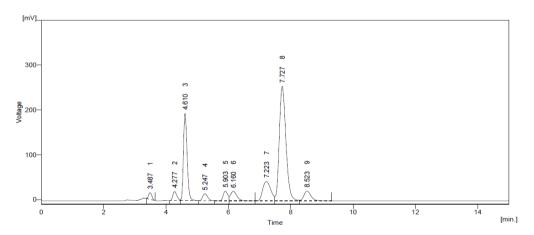


Figure 32: Chromatogram of Miconazole and Ornidazole Oxidation Degradation sample.

4. Thermal degradation

Miconazole Thermal Degradation: Miconzole was taken 100mg in a petri dish and kept it in the oven at 70 0 C for 4hrs, After time period the miconazole was kept out and from this 40mg of miconazole was transferred in 100ml volumetric flask and volume was made up with mobile

phase, From this solution taken 0.1ml and transferred to 10ml volumetric flask to make miconazole 4µg/ml.

Ornidazole Thermal Degradation: Ornidazole was taken 500mg in a petri dish and kept it in the oven at 70 0 C for 4hrs, After time period the ornidazole was kept out and from this 20mg of ornidazole was transferred in 100ml volumetric flask and volume was made up with mobile phase, From this solution taken 1ml and transferred to 10ml volumetric flask to make ornidazole 20µg/ml.

Tablet Thermal Degradation: Tablet powder taken in a petri dish and put it in the oven at 70 0 C for 4hrs, After time period the tablet powderequivalent to 20mg of ornidazole and 4mg of miconazole was transferred in 100ml volumetric flask and volume was made up with mobile phase, from this solution taken 1ml and transferred to 10ml volumetric flask to make ornidazole 20µg/ml and miconazole 4µg/ml.

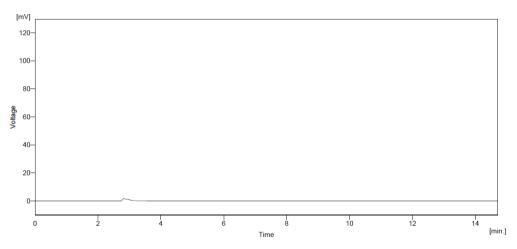


Figure 33: Chromatogram of Themal Degradation Blank.

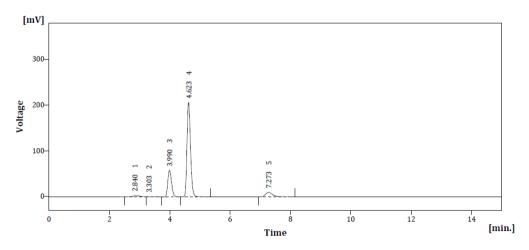


Figure 34: Chromatogram of Ornidazole Thermal Degradation Standard.

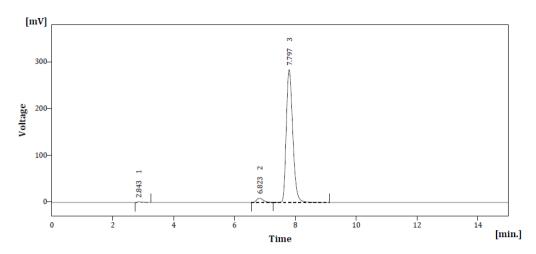


Figure 35: Chromatogram of Miconazole Thermal Degradation Standard.

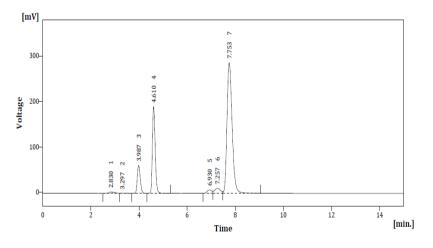


Figure 36: Chromatogram of Miconazole and Ornidazole Thermal Degradation sample.

5. Photo degradation

Miconazole Photo Degradation: Photo Degradationstudies were performed by taken 100mg of miconazole in petri dish and kept it in the UV chamber for 48 hours. After the time period the 40mgmiconazole was transferred in 100ml volumetric flask and volume was made up with mobilephase, from this solution taken 0.1ml and transferred to 10ml volumetric flask to make miconazole 4μ g/ml.

OrnidazolePhotoDegradation: Taken 500mg of ornidazole in a petri dish and kept it in the UV chamber for 48 hours, after time period the 20mgornidazole was transferred in 100ml volumetric flask and volume was made up with mobile phase, from this solution taken 1ml and transferred to 10ml volumetric flask to make ornidazole 20μ g/ml.

Tablet PhotoDegradation: Tablet Powder taken in a petri dish and kept it in the UV chamber for 48 hours, after time period the tablet powder equivalent to 20mg of ornidazole and 4mg of miconazole was transferred in 100ml volumetric flask and volume was made up with mobile phase, from this solution taken 1ml and transferred to 10ml volumetric flask to make ornidazole 20µg/ml and miconazole 4µg/ml.

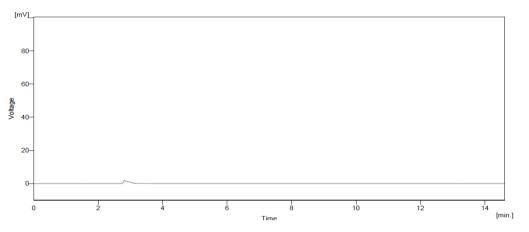


Figure 37: Chromatogram of Photo Degradation Blank.

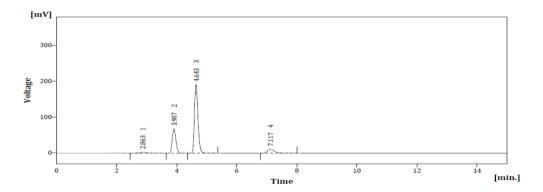
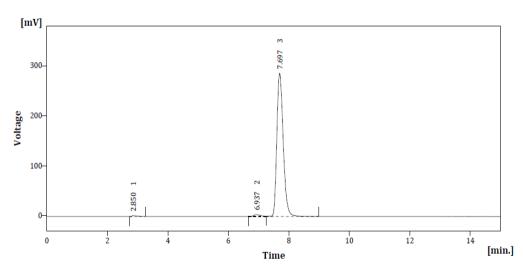
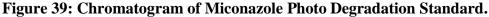
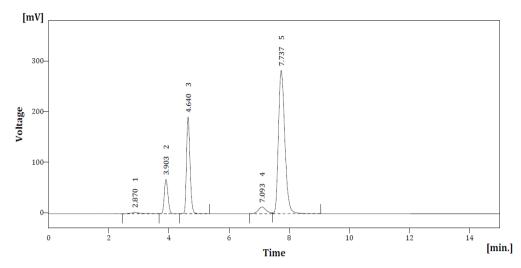
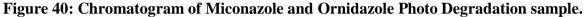






Figure 38: Chromatogram of Ornidazole Photo Degradation Standard.

Calculation for Stability

Table 4: Miconazole and Ornidazolestd for stability.

Drugs	Area	
Miconazole	4556.680	
Ornidazole	1972.384	

Table 5: Miconazole % Degradation.

Miconazole				
Parameter	Standard			Sample
	Area	%Degradation	Area	%Degradation
Acid	3985.55	12.53	3824.52	16.07
Base	4009.62	12.01	4055.90	10.99
Thermal	3924.74	13.86	3948.53	13.35
Oxidation	3772.82	17.20	3772.95	17.20
Photo	3802.51	16.55	3773.79	17.18

 Table 6: Ornidazole % Degradation.

Ornidazole				
Parameter	Standard			Sample
	Area	%Degradation	Area	%Degradation
Acid	1526.70	22.60	1485.16	24.70
Base	1447.20	26.63	1508.77	23.51
Thermal	1684.41	14.60	1548.44	21.49
Oxidation	1510.93	23.40	1595.94	19.09
Photo	1567.57	20.53	1561.88	20.79

Method validation

1. Specificity

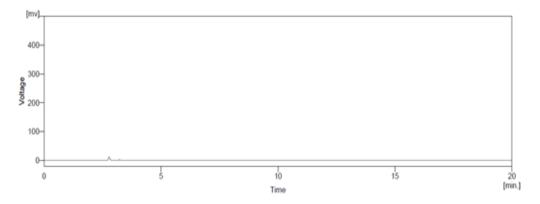


Figure 41: Chromatogram of Ornidazole and Miconazole blank.

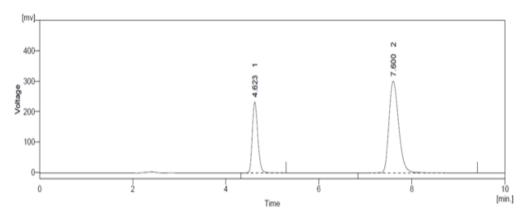


Figure 42: Chromatogram of Ornidazole and Miconazole std.

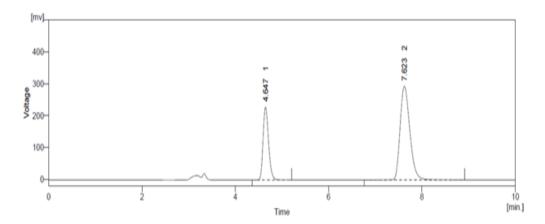


Figure 43: Chromatogram of Ornidazole and Miconazole sample.

The Chromatograms of ornidazole and miconazole standards and ornidazole and miconazole sample show no interference with the chromatogram of ornidazole and miconazole blank, so the developed method is specific.

WWW.W	ipr.net

2. Linearity and Range

The linearity for Miconazole and Ornidazole were assessed by analysis of combined standard solution in range of 2-6 μ g/ml and 10-30 μ g/ml respectively. Correlation co-efficient for calibration curve Miconazole and Ornidazolewas found to be 0.999 and 0.999 Respectively. The regression line equation For Miconazole: y = 94.49x + 7.213

1095x - 0.293 and For Ornidazole: y = 1095x - 0.293

Sr.No	Concentration(µg/ml)	Area
1	2	2213.258
2	3	3247.411
3	4	4389.165
4	5	5500.228
5	6	6566.309

Table 7: Linearity data for Miconazole

Table 8: Linearity data for Ornidazole.

Sr.No	Concentration(µg/ml)	Area
1	10	958.938
2	15	1408.078
3	20	1902.745
4	25	2380.279
5	30	2835.108

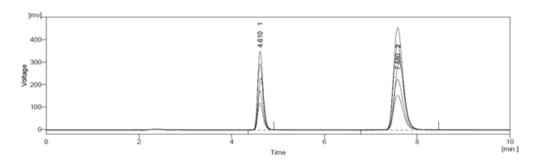


Figure 44: Overlay chromatogram of different concentrations of binary mixtures of Ornidazole and Miconazole.

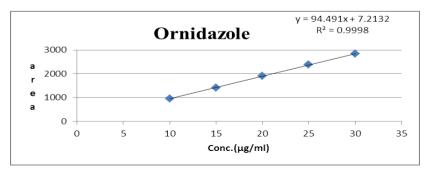


Figure 45: Calibration Curve of Ornidazole(10-30µg/ml).

WWW.WI	pr.net

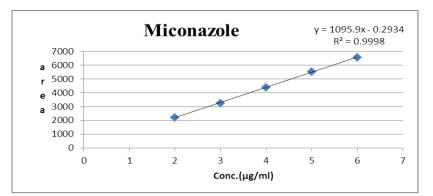


Figure 46: Calibration Curve of Miconazole (2-6µg/ml).

3. Precision

1. Repeatability

The data for repeatability of peak area measurement for ornidazole and miconazole, based on six measurements of same solution of ornidazole and miconazole are depicted in table 6.9 and 6.10 The % RSD for ornidazole and miconazole was found to be 1.047 and 1.025 respectively.

Miconazole						
Sr No.	Conc.(µg/ml).	Area	Mean \pm S.D (n=6)	% R.S.D		
		4455.173				
	4	4513.279				
1		4572.287	4524.246±46.378	1 025		
1.		4581.162	4324.240±40.378	1.025		
		4510.149				
		4513.426				

Table 10: Repeatability data for Ornidazole.

	Ornidazole							
Sr No.	Conc (µg/ml)	Area	Mean \pm S.D (n=6)	% R.S.D				
		1931.397						
	20	1956.649		1.047				
1		1982.221	1967.800 ± 20.601					
1.		1986.177	1907.800 ±20.001					
		1978.174						
		1972.183						

2. Intraday precision

The data for intraday precision for Ornidazole and Miconazole is shown in table 6.11. The % R.S.D. for Intraday precision was found to be 0.355-0.720. for Miconazole and 0.210-0.503 for Ornidazole.

		Miconazole		Ornidazole			
SR.	Conc. Area %			Conc.	Area	%	
NO.	(µg/ml)	Mean \pm S.D. (n=3)	R.S.D	(µg/ml)	Mean \pm S.D. (n=3)	R.S.D	
1	2	2222.284 ± 7.899	0.355	10	964.060 ± 4.850	0.503	
2	4	4373.692 ± 31.499	0.720	20	1901.293 ± 3.988	0.210	
3	6	6626.107 ± 32.590	0.492	30	2868.606 ± 11.677	0.407	

Table 11: Intraday precision data for estimation of Ornidazole and Miconazole.

3. Interday precision

The data for intraday precision for Ornidazole and Miconazole is shown in table 6.12. The % R.S.D. for interday precision was found to be 0.893-1.753 for Miconazole and 0.706-1.055 for Ornidazole.

		Miconazole	Ornidazole			
SR.	Conc.	Area	%	Conc.	Area	%
NO.	(µg/ml)	Mean \pm S.D. (n=3)	R.S.D	(µg/ml)	Mean \pm S.D. (n=3)	R.S.D
1	2	2197.614±38.513	1.753	10	956.349±10.089	1.055
2	4	4394.436±54.215	1.234	20	1910.88±13.485	0.706
3	6	6621.246±59.156	0.893	30	2869.411±25.619	0.893

4. LOD and LOQ

Calibration curve was repeated for five times and the standard deviation (SD) of the intercepts was calculated. Then LOD and LOQ were calculated as follows:

LOD = 3.3 * SD/slope of calibration curve

LOQ = 10 * SD/slope of calibration curve

Where,

SD = Standard deviation of intercepts

Limit of Detection

 Table 13: Limit of Detection data for Miconazole and Ornidazole.

Miconazole	Ornidazole
LOD = 3.3 x (SD / Slope)	LOD = 3.3 x (SD / Slope)
= 3.3 x (29.588/1095)	= 3.3 x (13.095/94.49)
$= 0.089 \ \mu g/ml$	$= 0.457 \ \mu g/ml$

Limit of Quantification

Micona	zole	Ornidazole
LOQ = 10 x (S)	D / Slope)	LOQ = 10 x (SD / Slope)
= 10 x (29.58)	88/1095)	= 10 x (13.095/94.49)
= 0.270 µ	ıg/ml	$= 1.386 \ \mu g/ml$

Table 14: Limit of Quantification data for Miconazole and Ornidazole.

5. Accuracy

Accuracy of the method was confirmed by recovery study from marketed formulation at three level of standard addition. The results are shown in table 6.13 and 6.14. Percentage recovery for Miconazole was 100.900-101.458%, while for Ornidazole, it was found to be in range of 100.365-100.837%.

SR. NO.	Conc. Level (%)	Sample amount (µg/ml)	Amount Added (µg/ml)	Amount recovered (µg/ml)	% Recovery	% Mean Recovery ± S.D
1		2	1.6	1.599	99.949	
2	80 %	2	1.6	1.610	100.610	100.837 ± 1.020
3		2	1.6	1.631	101.952	
4		2	2	2.027	101.357	
5	100 %	2	2	2.037	101.868	101.365 ± 0.499
6		2	2	2.017	100.871	
7		2	2.4	2.423	100.971	
8	120 %	2	2.4	2.395	99.795	100.566 ± 0.669
9		2	2.4	2.422	100.933	

Table 15: Recovery data for Miconazole.

Table 16: Recovery data for Ornidazole.

SR. NO.	Conc. Level (%)	Sample Amount	Amount Added	Amount recovered (µg/ml)	% Recovery	% Mean Recovery ± S.D
1		10	8	8.078	100.981	
2	80 %	10	8	8.137	101.716	100.900 ± 0.858
3		10	8	8.000	100.005	
4		10	10	10.115	101.154	
5	100 %	10	10	10.159	101.588	101.458 ± 0.264
6		10	10	10.163	101.631	
7		10	12	12.095	100.795	
8	120 %	10	12	12.119	100.988	101.119 ± 0.405
9		10	12	12.189	101.573	

6. Robustness

The effect of changes was found to be within the acceptance criteria as shown in table 6.17 and table 6.18. The % RSD should be less than 2%.

SR NO.	Area at Flow rate (- 0.2 ml/min)	Area at Flow rate (+ 0.2 ml/min)	Area at pH (-0.2)	Area at pH (+0.2)	Area at Mobile phase(-2)	Area at Mobile phase(+2)
1	2101.021	1730.423	2117.848	1742.516	2128.385	1746.755
2	2095.276	1742.601	2141.178	1765.224	2147.520	1741.008
3	2117.829	1759.198	2136.900	1750.734	2158.256	1749.384
% R.S.D	0.557	0.828	0.583	0.656	0.706	0.245

Table 17: Robustness data for Ornidazole Standard.

Table 18: Robustness data for Miconazole Standard.

SR NO.	Area at Flow rate (- 0.2 ml/min)	Area at Flow rate (+ 0.2 ml/min)	Area at pH (- 0.2)	Area at pH (+ 0.2)	Area at Mobile phase(-2)	Area at Mobile phase(+2)
1	4845.413	3989.822	4884.326	4017.779	4908.634	4021.760
2	4808.714	4017.775	4938.065	4070.195	4952.731	4001.271
3	4884.146	4066.037	4882.869	4041.699	4977.577	4033.556
% R.S.D	0.778	0.958	0.642	0.649	0.706	0.406

7. Analysis of marketed formulation by developed method.

Applicability of the proposed method was tested by analyzing the commercially available Tablet formulation Candifem. The results are shown in table 6.19.

 Table 19: Analysis of marketed formulation.

Tablet	Lable value		Assay (% of label claim*) Mean ± S. D.	
	Miconazole	Ornidazole	% Miconazole	% Ornidazole
Candifem	100mg	500mg	98.975±0.808	99.901 ± 0.763
			2.218124	
			2.218124	
			± 1.5289	

The assay results were comparable to labeled value of each drug in Tablet dosage form. These results indicate that the developed method is accurate, precise, simple and rapid. It can be used in the routine quality control of dosage form in industries.

DISCUSSION

Miconazole is an imidazole antifungal agent that is used topically and by intravenous infusion.

Ornidazole is a drug that cures some protozoan infections. It has been investigated for use in Crohn's disease after bowel resection RP-HPLC method was developed for simultaneous estimation Ornidazole and Miconazole. In RP-HPLC method, good resolution and separation of two drugs was achieved. Water: Acetonitrile: Acetic acid (30:70:0.1) was used as mobile phase. Retention time of Ornidazole and Miconazole were found to be 4.640 and 7.633min respectively with a flow rate of 1 ml/min. The proposed method was accurate and precise. Therefore proposed method can be used for routine analysis of Ornidazole and Miconazole in tablets. Forced degradation study of Ornidazole and Miconazole was performed by RP-HPLC method which includes Acid, Base, Oxidative, Photo and Thermal degradation. Results of degradation were found within limit.

CONCLUSION

The above developed stability indicating RP-HPLC method was validated in terms of accuracy, precision, linearity, robustness and reproducibility. This method was found to be simple, rapid, accurate, robust. Precise and reproducible. This method can be applied for routine quantitative analysis of miconazole and ornidazole.

ACKNOWLEDGMENTS

I want to thanks some of the special persons and acknowledge who encourage, support, love and cooperate in my research work. I want to thanks my parents, husband, guide, teacher and friends.

I am really thankful to god who give me inspiration and strength to work in research project.

I would like to give my sincere thanks to my guide Mrs. Darpini Patel, Associate Professor, Dept. of Quality Assuarance, K.B. Raval college of Pharmacy who always guiding me in the right direction.

I am grateful to Dr. M. R. Mehta, Principal, K. B. Raval college of Pharmacy for helping us.

I would like to thanks to Dr. Hiral Panchal, Head of the Quality Assuarance Dept. for guiding me in my research work.

I also thankful to Avance Phytotherapies Pvt Ltd. for give me opportunity to work there.

I am grateful to Mrs. Vidhi Dave, Ms. Pankti, Mrs. Jaya Patel who help and support me in research project. I would thankful to non teaching staff.

I am thankful to my family for their blessing and support to overcome all the difficulties throught my life. I am thankful to my mother Mrs. Shardaben Gameti, my father Mr.

Ramanlal Gameti and my brother Narendra gamete. I am also thankful to my husband Dr. Prakashchandra Ghoghra and my son Arya.

I am also thankful to my friends Sheetal, Hetal, Jinal, Kundan, Akash, Harshit to help and support in my research work.

Last but not least, I express my gratitude and apologize to anybody whose contribution, I could not mention in this page.

REFERENCES

- Birsan M, Cojocaru CC, Scutariu MM, povovici I, "Validation of A Chromatographic Method For Miconazole Assay From Oral Sustained Release MucoadhesiveTablets" *Farmacia*, 2014; 62(3): 555-563.
- Connor NO, Geary M, Wharton M, Sweetman P, "The Determination of Miconazole and its Related Production Impurities Together withBasic Solution Stability Studies Using a Sub 2 mm Chromatographic Column" *J. chrom. Sci.*, 2012; 50: 199-205.
- 3. Bhosle S, Rajput SJ, "RP-HPLC Method for Simultaneous Estimation of Miconazole and Hydrocortisone in Cream Formulation" *inventi*, 2014; 2014(3).
- Manikanta AY, "Analytical Method Development and Validation for Simultaneous Estimation of Miconazole and Hydrocortisone in Topical Formulation by RP-HPLC" *World j. pharm. Sci.*, 2015; 4(8): 2063-2080.
- Asghar S, Sheikh S, Ahmad S, "Simultaneous Determination and Validation of Miconazole Nitrate with the Anitmicrobial Preservatives using RP-HPLC Method: for Benzoic Acid, Sodium Propyl Hydroxyl Benzoate, and Sodium Methyl Hydroxy Benzoate in Pharmaceutical Cream" *Int. j. pharm. Res. Sch.*, 2014; 3(1): 106-113.
- Dayyih WA, Saadi NA, Hamad M, Mallah E, Matalka K, "Development And Validation of HPLC Method For Some Azoles In Pharmaceutical Preparation" *Int. j. pharm. Sci. res.*, 2012; 3(10): 3686-3692.
- Mubeen RS, Mantri AP, Sigh SK, "Simultaneous Estimation of Chlorhexidine Digluconate and Miconazole Nitrate By RP-HPLC" *Eur. J. bio. med and pharm. Sci.*, 2016; 3(4): 617-620.
- Prava VR, Seru G, "RP-HPLC Method Development and Validation for the Simultaneous Determination of Clindamycin and Miconazole in Pharmaceutical Dosage Forms" *Pharm. Method*, 2014; 5(2): 56-60.
- 9. Mundhey DA, Morris PS, lohiya GK, Avari JG, "Development And Validation Of

Spectrophotometric Methods For The Simultaneous Estimation Of Miconazole Nitrate and MetronidazoleIn Bulk Powder Form" *Int. res. J. pharm.*, 2014; 5(7): 597-603.

- El-bagary R, Foud MA, El-shaal MA, Toiba EH, "Derivative, derivative of the ratio spectrophotometric and stability-indicating RP-HPLC methods for the determination of Mometasonefuroate and Miconazole nitrate in cream" *J. chem. pharm. Res.*, 2013; 5(11): 368-378.
- Heneedek HM, Salama I, Mostafa S, El-Sadek M, "HPLC and chemometric methods for the simultaneous determination of miconazole nitrate and nystatin" *J. chrom. Sci.*, 2012; 50(10): 855-861.
- Patel AJ, "Development and Validation of Stability Indicating HPTLC Method for Simultaneous Estimation of Fluocinolone Acetonide and Miconazole Nitrate in Ointment" Aus. Chrom., 2014; 1(5): 1023.
- Malani PS, Hasumali RA, Jain VC, "Development And Validation of Analytical Method For Simultaneous Estimation of Miconazole Nitrate And Clobetasol Propionate In Cream By HPTLC Method" *Pharm. Sci. monitor*, 2014; 5(2): 386-399.
- 14. Meshram DB, Bagade SB, Tajnr MR, "Simultaneous Determination of Metronidazole And Miconazole Nitrate In Gel By HPTLC" *Pak. J. pharm. Sci.*, 2009; 22(3): 323-328.
- 15. Shah KA, Dave JB. "Development And Validation of RP-HPLC And Hptlc Methods For Simultaneous Estimation of Mometason Furoate And Miconazole Nitrate In Cream Formulation" World j. pharm. And Pharm. Sci., 2015; 4(6): 1156-1172.
- 16. Patel KG, Shah PM, Shah PA, Gandhi TR, "Validated high-performance thin-layer chromatographic (HPTLC) method for simultaneous determination of Nadifloxacin, Mometasonefuroate, and Miconazole nitrate cream using fractional factorial design" *J. food and drug anal.*, 2016; 24: 610-619.
- 17. Al-Kheir AA, Saleh HM, El-Henawee MM, gharib BS, "Spectrophotometric Determination of Miconazole Nitrate And Betamethasone Valerate In Bulk Powder And In Topical Cream" *Ind-ame. J. pharm. Res.*, 2014; 4(11): 5507-5519.
- Indian Pharmacopoeia, The Indian Pharmacopoeia Commission Ghaziabad, 2010; III: 1823-1824.
- Nanda RK, Gaikwad J and Prakash A "simultaneous spectrophotometric estimation of cefixime and ornidazole in tablet dosage form." *Int. J of Pharma tech and research*, 2009; 1(3): 488-491.

- 20. ManishaPuranik, D. V. Bhawsar, PrachiRathi, and P. G. Yeole, "Simultaneous Determination of Ofloxacin and Ornidazole in Solid Dosage Form by RP-HPLC and HPTLC Techniques." *Ind. J. Pharma Sci.*, 2010; 4: 513-517.
- 21. Pinak Patel, Kartik Patel, K.K. Bhatt and Swayamprakash Patel, "New Improved RP-HPLC Method for Determination of No, rfloxacin and Ornidazole in Their Combined Dosage Form." *Int. J research and Pharma sci.*, 2001; 2 (2), 710-713
- Nimila, I. Carolin; Balan, P.; Sundar, R. Sathiya; Kumar, J. Ashok; Rajasekar, S. "Simultaneous RP-HPLC Estimation of Ciprofloxacin Hydrochloride and Ornidazole in Tablet Dosage Form." *Asi. J Research in Chem.*, 2011; 4(2): 227.
- 23. K.S. Natraj, Y. Suvarna, G. Prasanti and S.V. Saikumar, "uv spectrophotometric method development and validation of simultaneous estimation of ciprofloxacin and ornidazole in tablet dosage form" *Int. J Pharma*, 2013; 4: 178-181.
- Sonali Paramane, Lata Kothapalli, Asha Thomas and A Deshpande," Simultaneous spectrophotometric estimation of gatifloxacin and ornidazole in tablet dosage form" *Ind. J. Pharma Sci.*, 2006; 3(1): 326-329.
- 25. Chepurwar S.B., Shirkhedkar A.A., S.B. Bari, R.A. Fursule, and S.J. Surana," Validated HPTLC Method for Simultaneous Estimation of Levofloxacin Hemihydrate and Ornidazole in Pharmaceutical Dosage Form" J. Chroma. Sci., 2007; 45: 531-536.
- 26. Wankhede SB, Prakash A, Kumari B, Kumari SS Chitlange," Simultaneous spectrophotometric estimation of norfloxacin and ornidazole in tablet dosage form" *Ind. J* of Pharma Sci., 2009; 325-328.
- 27. Rajan V. Rele., Swapnil A. Sawant and Sachin S. Patil.," Simultaneous spectrophotometric estimation of ofloxacin and ornidazole by first order derivative spectroscopy method in combined dosage form" *Pelagia Research Library*, 2013; 4: 43-48.
- 28. Bhusari KP and Chaple DR.," Simultaneous Spectrophotometric Estimation of Ofloxacin and Ornidazole in Tablet Dosage Form" *Asian J. Research Chem.*, 2009; 60-62.
- 29. Fatima A, Sameena HS, Begum H, "Stability indicating RP-HPLC method development and validation for simultaneous estimation of ornidazole and diloxanidefuroate in bulk drugand combined dosage form" *Der Pharm. Let.*, 2014; 6(5): 234-245.
- 30. Kumar DV, Swetha P, Prasad GS, Kumar AA, "Assay Method Development And Validation For Simultaneous Quantitative Estimation of Diloxanide Furoate And Ornidazole In Tablets By RP-HPLC" Int. j. pharm. And pharm. Sci., 2015; 7(10): 357-362.

- 31. Solanki NN, Patel PB, "RP-HPLC Method for Simultaneous Estimation of Ornidazole and Miconazole In Tablet Dosage Form" *Inventi*, 2016; 3: 1-5.
- Pathak H, Vaidya V, "A Rapid Gas Chromatography- Mass Spectroscopy Method For Simultaneous Quantification of Ornidazole And Miconazolefrom Cream Formulations: Development, Validation and Application" *Int. J pharm. Sci. And res.*, 2016; 7(7): 2676-2683.