

SYNTHESIS AND BIOLOGICAL EVALUATION OF SOME COUMARINE-SCHIFFS BASE DERIVATIVE

¹Pravin Chowdhary, ²Ashish Asrondkar, ³Vrushali Patil, ^{*4}Anil Bobade,
⁵Shashikant Vaidya.

¹Department of Chemotherapy, Haffkine Institute For Training, Research and Testing,
Parel, Mumbai-400012, India.

²Department of Chemotherapy, Haffkine Institute For Training, Research and Testing,
Parel, Mumbai-400012, India.

³Department of Chemotherapy, Haffkine Institute For Training, Research and Testing,
Parel, Mumbai-400012, India.

⁴Assistant Director, Department of Chemotherapy, Haffkine Institute For Training,
Research and Testing, Parel, Mumbai-400012, India.

⁵Director, Haffkine Institute for Training, Research and Testing, Parel, Mumbai-400012,
India.

Article Received on
26 June 2015,

Revised on 16 July 2015,
Accepted on 10 Aug 2015

*Correspondence

For Author

Anil Bobade

Assistant Director,
Department of
Chemotherapy, Haffkine
Institute For Training,
Research and Testing,
Parel, Mumbai-400012,
India.

ABSTRACT

8-Hydroxycoumarine reacts with ethyl chloroacetate in the presence of anhydrous K_2CO_3 to yield ethyl [(2-oxo-2H-chromen-4-yl)oxy]acetate (1). The ethyl ester reacts with hydrazine hydrate and forms 2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (2). The hydrazide upon reaction with various substituted acetophenone yields substituted 2-[(2-oxo-2H-chromen-4-yl)oxy]- N' -($(1E)$ -1-Phenylethylidene]acetohydrazide (3a-e). The newly synthesized compounds were assigned on the basis IR, MASS and 1H NMR spectral data. All the compounds have been screened for their antibacterial and antifungal activity by the cup-plate method. Some of the compounds showed good activity against all the organisms.

KEYWORDS: Coumarine, Schiff bases, Hydrazones, Antibacterial, and Antifungal activity.

1.0 INTRODUCTION

Heterocyclic chemistry is one of the largest areas of research in organic chemistry and it is growing rapidly. Of all published organic chemistry literature, papers on heterocyclic synthesis accounted for around 60 % in 1998,^[1] but nowadays the fraction is much larger considering that novel heterocyclic compounds are published in different fields such as biochemistry, pharmaceuticals, materials and others. A similar trend is seen for coumarin, a heterocyclic system with a very large number of different derivatives. Coumarin is a compound with varied biological activities and in 1954 it was classified as a carcinogenic substance.^[2] Main representatives of the class are its hydroxy derivatives 4-hydroxycoumarin (**1**) and 7-hydroxycoumarin (*umbeliferone*), also biologically active and very important for synthesis of other coumarin derivatives. Until now, an enormous number of compounds with coumarin systems in their structure have been synthesized. Those derivatives have shown a remarkably broad spectrum of pharmacological and physiological activities and they are used as anticoagulant,^[3-5] antibacterial,^[6,7] antiviral,^[8,9] antitumor,^[10-13] bactericidal,^[14] fungicidal,^[15] and anti-inflammatory agents.^[16] Also, in recent times there are references to derivatives with anti-HIV activity.^[17-20]

2.0 MATERIAL AND METHODS

All raw materials used in the synthesis have been obtained from M/s Fluka AG (Buchs-Switzerland) and M/s Sigma Aldrich chemicals and Co. Inc. (Milwaukee, WI, USA). Melting points were recorded on a Thermonik Melting point apparatus (Campbell Electronics, Mumbai, India) and are uncorrected. IR spectra were recorded on an IR-Affinity, Shimadzu using DRS system. ¹H-NMR spectra have been recorded on a JEOL AL-400 FT-NMR spectrometer (400 MHz- JEOL Ltd. Tokyo, Japan), using TMS as internal standard in solvent DMSO. Elemental analysis has been carried out on a C, H, N Elemental Analyzer (Thermo-Finnigan Flash, EA 1112, Italy). Mass data have been recorded on Agilent GC-MS.

2.1 EXPERIMENTAL

2.1.1 Preparation of ethyl [(2-oxo-2H-chromen-4-yl)oxy]acetate (**2**)

4-Hydroxy coumarin (0.01 mol), ethyl chloro acetate (0.01 mol) and anhydrous K₂CO₃ was dissolved in dry acetone was refluxed on water bath for 24 hrs. The resulting reaction mixture was cooled and filtered. The acetone was removed from the filtrate by distillation the remaining filtrate was poured into well stirred, ice-cold water. The organic layer was

extracted with diethyl ether. The ether was then removed by evaporation on a water bath and the remaining liquid vacuum distilled to afford pure product.

Yield 74%; white colour solid; mp; 95°C

¹H NMR (400 MHz, DMSO-δ6) δ (ppm) 3.2(s, 2H, CH₂), 3.5 (q, 2H, CH₂), 3.8 (t, 3H, CH₃)

7.11-8.28 (m, 5H, Ar-H)

Anal. calcd for C₁₃H₁₂O₅: C, 62.90; H, 4.87;

Found: C, 62.92; H, 4.89;

IR (KBr) cm⁻¹: 1753.29(C=O), 1116.78(-O-), 752.24(Di substituted Ar-H)

MS (m/z): 249[M⁺] (C₁₃H₁₂O₅⁺).

2.1.2 Preparation of 2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (3)

Crystallized product of compound (2) (ethyl [(2-oxo-2H-chromen-4-yl)oxy]acetate) was dissolved in alcohol reflux the reaction mixture. To this solution Hydrazine hydrate was added and refluxes the reaction mixture for 5 hours. Reaction was monitoring by TLC technique. From the resulting mixture, the excess of ethanol was removed by distillation. On cooling, white, needle-like crystals of the required products separated. The product was dried and recrystallized by ethanol.

Yield 72%; colourless solid; mp; 168°C

¹H NMR (400 MHz, DMSO-δ6) δ (ppm) 5.4 (s, 2H, NH₂), 6.1(s, 1H, NH), 3.2(s, 2H, CH₂), 7.12-8.48 (m, 5H, Ar-H)

Anal. calcd for C₁₁H₁₀N₂O₄: C, 56.41; H, 4.30; N, 11.96;

Found: C, 56.67; H, 4.46; N, 11.99

IR (KBr) cm⁻¹: 3325.28(-NH), 1058.92(-O-), 1554.63(-C-O), 1647.21(-NH2), 1215.15(-CN)

MS (m/z): 235 [M⁺] (C₁₁H₁₀N₂O₄⁺).

2.1.3.1 Preparation of 2-[(2-oxo-2H-chromen-4-yl)oxy]-N¹-[(1Z)-1-phenylethylidene]acetohydrazide (4a)

A mixture of crystallized product compound (3) (2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide) (0.01 mol) was dissolved in ethanol (20mL) by warming, and then substituted acetophenone (0.01 mol) in ethanol and 1 ml. of glacial acetic acid was added and refluxes the reaction mixture on water bath for 6 hrs. The reaction mixture is cooled and poured into 100mL of ice cold water and the precipitated compound is filtered and recrystallized from alcohol to yield product.

Yield 68%; white colour solid; mp; 176°C

¹H NMR (400 MHz- DMSO-d₆) δ (ppm) 3.8(s,2H, CH₂), 4.7(s, 3H, CH₃), 5.6(s,1H, NH), 7.2-8.2(m, 10H, Ar-H)

Anal. Calc. for C₁₉H₁₆N₂O₄: C,67.85; H,4.79; N,8.33;

found: C, 67.90; H, 4.80; N, 8.55;

IR (KBr) cm⁻¹: 1034(-O-), 1620(CONH), 1566(C=N)

MS (m/z): 337 [M⁺] (C₁₉H₁₆N₂O₄⁺).

2.1.3.2 Preparation of N'-(1Z)-1-(4-hydroxyphenyl)ethylidene]-2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (4b)

Yield 74%; yellow colour solid; mp; 182°C

¹H NMR (400 MHz- DMSO-d₆) δ (ppm) 3.4(s,2H, CH₂), 4.3(s, 3H, CH₃), 5.1(s,1H, NH), 8.2(s,1H, OH), 7.2-8.2(m, 9H, Ar-H)

Anal. Calc. for C₁₉H₁₆N₂O₅: C,64.77; H,4.58, N,7.95;

found: C, 64.97; H, 4.66; N, 7.98;

IR (KBr) cm⁻¹: 1034(-O-), 1620(CONH), 1536(C=N), 1246(OH)

MS (m/z): 353 [M⁺] (C₁₉H₁₆N₂O₅⁺).

2.1.3.3 Preparation of N'-(1Z)-1-(4-methylphenyl)ethylidene]-2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (4c)

Yield 62%; yellow colour solid; mp; 168°C

¹H NMR (400 MHz- DMSO-d₆) δ (ppm) 3.2(s,2H, CH₂), 4.5(s, 3H, CH₃), 5.4(s,1H, NH), 2.3(s, 3H, CH₃), 7.2-8.2(m, 9H, Ar-H)

Anal. Calc. for C₂₀H₁₈N₂O₄: C,68.56; H,5.18; N,8.00;

found: C, 68.60; H, 5.35; N, 8.10;

IR (KBr) cm⁻¹: 1180(-O-), 1682(CONH), 1472(CH₃), 1682(C=N)

MS (m/z): 351 [M⁺] (C₂₀H₁₈N₂O₄⁺).

2.1.3.4 Preparation of N'-(1Z)-1-(4-methoxyphenyl)ethylidene]-2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (4d)

Yield 43%; yellow colour solid; mp; 155°C

¹H NMR (400 MHz- DMSO-d₆) δ (ppm) 3.9(s,2H, CH₂), 4.8(s, 3H, CH₃), 5.7(s,1H, NH), 2.5(s, 3H, CH₃), 7.2-8.2(m, 9H, Ar-H)

Anal. Calc. for C₂₀H₁₈N₂O₅: C,65.57; H,4.95; N,7.65;

found: C, 65.69; H, 4.99; N, 7.70;

IR (KBr) cm^{-1} : 1142(-O-), 1626(CONH), 1626(C=N), 2814(OCH₃)
 MS (m/z): 367 [M⁺] (C₂₀H₁₈N₂O₅⁺).

2.1.3.5 Preparation of N'-(1Z)-1-(4-chlorophenyl)ethylidene]-2-[(2-oxo-2H-chromen-4-yl)oxy]acetohydrazide (4e)

Yield 78%; white colour solid; mp; 212°C

¹H NMR (400 MHz- DMSO-d₆) δ (ppm) 3.4(s,2H, CH₂), 4.4(s, 3H, CH₃), 5.6(s,1H, NH), 7.4-8.2(m, 9H, Ar-H)

Anal. Calc. for C₁₉H₁₅ClN₂O₄: C, 61.55; H, 4.08; N, 7.56;

found: C, 61.67; H, 4.16; N, 7.70;

IR (KBr) cm^{-1} : 1102(-O-), 1620(CONH), 1566(C=N), 755(Cl)

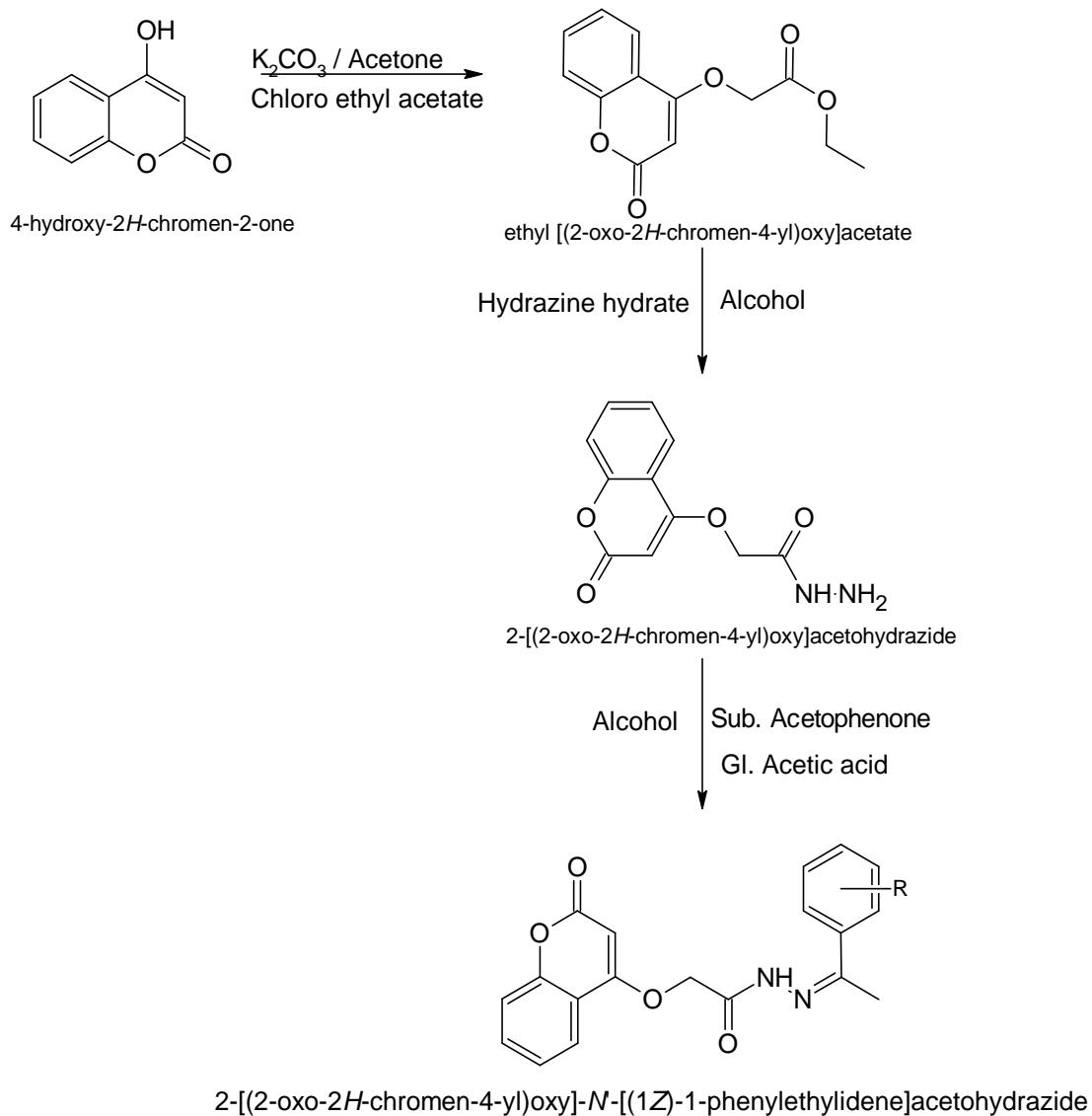
MS (m/z): 371 [M⁺] (C₁₉H₁₅ClN₂O₄).

2.2 Antimicrobial Activity^[21]

The antimicrobial activity of all these compounds was screened by using cup-plate agar diffusion methods in DMF, using standard Ampicillin 10 $\mu\text{g}/\text{ml}$ against gram positive and gram negative bacteria such as *E. coli*, *S. aureus*, and *C. albicans*. While all compounds were also screened for their antifungal activities by using standard Ketonazole 10 $\mu\text{g}/\text{ml}$ against *C. albicans* in Tables no 2.

Table 1: - Physical and analytical data of compound 3a-e.

Sr No.	Comp.	R	mp (°C)	Colour	Yield
1	4a	H	176	White	68%
2	4b	4-OH	182	Pale Yellow	74%
3	4c	4-CH ₃	168	Yellow	62%
4	4d	4-OCH ₃	155	Yellow	43%
5	4e	4-Cl	212	White	78%


Table 2: - Anti-microbial activity of Synthesized compound.

Sr. No.	Comp.	Substituent's R	Anti-microbial Activity ($\mu\text{g}/\text{ml}$)		
			Anti-Bacterial Strain		Anti-Fungal Strain
			<i>E. coli</i>	<i>S. aureus</i>	<i>C. albicans</i>
1	5a	OH	-ve	-ve	-ve
2	5b	diOH	-ve	-ve	-ve
3	5c	Cl	-ve	-ve	-ve
4	5d	diOCH ₃	-ve	-ve	-ve
5	5e	F	-ve	-ve	-ve
6	Ampicillin	-	+ve (24 mm)	+ve (24 mm)	-

7	Kitonazole	-	-	-	+ve (24 mm)
---	------------	---	---	---	----------------

- Ampicillin (MIC-10 μ g/ml) used as standard against *E. coli* & *S. aureus*.
- Kitonazole (MIC- 10 μ g/ml) as standard against *C. albicans* and *A. niger*.

Table No 3: - SCHEMATIC REPRESENTATION

3.0 RESULTS AND DISCUSSION

Compounds (4a-e) were prepared according to reported procedures. Target compounds 2-[(2-oxo-2H-chromen-4-yl)oxy]-N'-[(1Z)-1-phenylethylidene]acetohydrazide derivatives (4a-e) were prepared by fusing compounds (3) and substituted acetophenone. Structures of compounds were supported by IR, $^1\text{H-NMR}$ and MS in addition to elemental method of

analyses. IR spectra of compounds (4a-e) were characterized by the characteristic bands due to $-C=N$ at 1590-1690 cm^{-1} . 1H -NMR spectra of compounds (4a-e), CH_2 and CH_3 of thiazolidinone ring showing signal between 2-3 and 4-5 ppm. NH which is present in between coumarine and acetophenone ring characterized signal between 5-6 ppm. MS of compound (4a-e) revealed the molecular ion peaks M^+ corresponding to the molecular weight for compounds 4a, 4b, 4c, 4d, 4e.

4.0 CONCLUSION

A number of schiff base derivatives were prepared through 3 steps reaction. This protocol involves the formation of 2-[(2-oxo-2H-chromen-4-yl)oxy]-N'-(1Z)-1-phenylethylidene] acetohydrazide which done by the treatment hydrazino derivative with acetophenone. The structures of target compounds (4a-e) were elucidated depending upon different spectral data as well as the elemental methods of analyses. In addition, MS were carried out. The entire series of test compounds (4a-e) showed weak to moderate antibacterial and antifungal activity in comparison to ampicillin and ketonazole as a standard drug.

5.0 ACKNOWLEDGEMENT

The authors are thankful to SAIF, IIT, Powai, Mumbai for carrying out the CHN elemental analysis and also thankful to SAIF, Punjab University, Chandigarh for recording the NMR spectra.

7.0 CONFLICT OF INTEREST

“The author(s) declare(s) that there is no conflict of interest regarding publication of this article”

6.0 REFERENCE

1. Gupta R., Kumar M., Gupta V., *Heterocyclic Chemistry*; Springer-Verlag: Berlin, 1998.
2. Sax I., *Dangerous Properties of Industrial Materials* (4th Ed.); Van Nostrand Co.: New York, 1975.
3. Manolov I., Danchev D., Synthesis, toxicological and pharmacological assessment of some 4-hydroxycoumarins, *Eur. J. Med. Chem. Ther.*, 1995; 30: 531-536.
4. Arora B., Mathur N., Relationship between structure and anticoagulant activity of coumarin derivatives, *Brit. J. Pharmacol.*, 1963; 20: 29-35.
5. Ziegler E., Rossmann U., Chemistry of 4-hydroxycoumarins. VIII. Synthesis of anticoagulants, *Monatsh. Chem.*, 1957; 88: 25-34.

6. Al-Haiza A., Mostafa S., El-Kady Y., Synthesis and Biological Evaluation of Some New Coumarin Derivatives, *Molecules*, 2003; 8: 275-286.
7. Dutton J., Sutcliffe J., Yang B., 4-Hydroxy coumarin derivatives with antibacterial activity, *PCT Int. Appl. US1993/006308*, 1994.
8. Parmar S., Bisht S., Jain R., Singh S., Sharma K., Gupta S., Malhotra S., Tyagi D., Vardhan A., Pati N., Berghe V., Vlietinck J., Synthesis, Antimicrobial and Antiviral Activities of Novel Polyphenolic Compounds, *Ind. J. Chem.*, 1996; B(35): 220-232.
9. Ishikawa T., Kotake I., Ishii H., Synthesis of Toddacoumaquinone, a Coumarin-Naphthoquinone Dimer, and Its Antiviral Activities, *Chem. Pharm. Bull.*, 1995; 43: 1039-1041.
10. Nofal M., El-Zahar I., Abd El-Karim S., Novel Coumarin Derivatives with Expected Biological Activity, *Molecules*, 2000, 5, p. 99-113.
11. Raev L., Voinova E., Ivanov I., Popov D., Antitumor activity of some coumarin derivatives, *Pharmazie*, 1990; 45: 696-702.
12. Valenti P., Rampa A., Recanatini M., Bisi A., Belluti F., Da Re P., Carrara M., Cima L., Synthesis, cytotoxicity and SAR of simple geiparvarin analogues, *Anticancer Drug Des.*, 1997; 12: 443-451.
13. Shah A., Naliapara Y., Sureja D., Motohashi N., Kawase M., Miskolci C., Szabo D., Molnar J., 6,12-Dihydro-1-Benzopyrano[3,4-b][1,4]Benzothiazin-6-ones Synthesis and MDR Reversal in Tumor Cells, *Anticancer Res.*, 1998; 18: 3001-3004.
14. El-Sayed M., Abd-Allah A., Synthetic and Biological Studies on Coumarin Hydrazone Derivatives, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2001; 170: 75-86.
15. El-Agrody M., Abd El-Latif S., El-Hady A., Fakery H., Bedair H., Heteroaromatization with 4-hydroxycoumarin. Part II, *Molecules*, 2001; 6: 519-527.
16. Emmanuel-Giota A., Fylaktakidou C., Hadjipavlou-Litina J., Litinas E., Nicolaides N., Synthesis and biological evaluation of several 3-(coumarin-4-yl)- tetrahydroisoxazole and 3-(coumarin-4-yl)-dihydropyrazole derivatives, *J. Heterocycl. Chem.*, 2001, 38: 717-722.
17. Spino C., Dodier M., Sotheeswaran S., Anti-HIV Coumarins from *Calophyllum* Seed Oil, *Bioorg. Med. Chem. Lett.*, 1998; 8: 3475-3478.
18. Thaisrivongs S., Watenpaugh D., Howe J., Tomich K., Dolak A., Chong T., Tomich C.; Tomasselli G., Turner R., Strohbach W., Mulichak M., Janakiraman N., Moon B., Lynn C., Horng M., Hinshaw R., Curry A., Rothrock J., Structure-Based Design of Novel HIV Protease Inhibitors: Carboxamide- Containing 4-Hydroxycoumarins and 4-Hydroxy-2-pyrones as Potent Nonpeptidic Inhibitors, *J. Med. Chem.*, 1995; 38: 3624-3637.

19. Gaddam S., Khilevich A., Filer C., Rizzo D., Giltner J., Flavin T., Xu Q., Synthesis of Dual C-14-Labeled (+)-Calanolide-A, a Naturally-Occurring Anti-HIV Agent, *J. Label. Comp. Radiopharm.*, 1997; 39: 901-906.
20. Zhao H., Neamati N., Hong H., Mazumder A., Wang S., Sunder S., Milner A., Pommier Y., Burke R. Coumarin-Based Inhibitors of HIV Integrase, *J. Med. Chem.*, 1997; 40: 242-249.
21. Wanjari A., Pund D., Bhagwatkar A., Jadhav G., *International Journal of Chemical and Physical Science.*, 2012; 1(1): 1-5.