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ABSTRACT 

Azole antifungals are widely studied using various methods of drug 

design. A series of N-substituted imidazole derivatives was examined 

to determine the structural requirements for antifungal activity by 

three-dimensional quantitative structure-activity relationship (3D-

QSAR) using comparative molecular field analysis (CoMFA). A 

training set of 50 compounds was used to establish the CoMFA model, 

which was validated by evaluation of a test set of 15 compounds. In 

this study, the superimposition of molecules was carried out by atom-

based fit (rms), multi fit and field fit. The best QSAR model was 

obtained from rms fit with cross-validated r
2

 = 0.725, conventional r
2

 = 

0.939 and predictive r
2

 = 0.518. This series of compounds was also 

analyzed by genetic function approximation (GFA). The best model 

with cross-validated r
2

 of 0.608 and  predictive r
2

 of 0.391  emphasized   

the importance of molecular shape analysis parameters. The models obtained from the 

present study may be useful for the development of new imidazole derivatives as potential 

antifungals.  

 

KEYWORDS: QSAR, CoMFA, Antifungal activity, N-substituted Imidazole derivatives. 

 

INTRODUCTION 

The frequencies and type of life-threatening fungal infections have increased dramatically in 

immunocompromised patients.
[1]

 The major opportunistic pathogen has been Candida 

albicans. The management of invasive fungal infection utilizes a variable multidisciplinary 

approach involving antifungals, appropriate surgery and immuno-correction. Currently 

available antifungal drugs have essentially three molecular targets: sterol 14-demethylase 

World Journal of Pharmaceutical Research 
        SJIF Impact Factor 5.045 

Volume 4, Issue 1, 1673-1692.          Research Article           ISSN 2277– 7105

  

Article Received on 

12 Nov 2014, 
 

Revised on 05 Dec  2014, 

Accepted on 29 Dec 2014 

 

*Correspondence for  

Author 

Dr. Vithal M. Kulkarni 

Prof, Department of 

Pharmaceutical 

Chemistry, Poona 

College of Pharmacy, 

Bharati Vidyapeeth 

University, Erandwane, 

Pune - 411038, 

Maharashtra, India.   



www.wjpr.net                                   Vol 4, Issue 1, 2015. 

 

1674 

 

Vithal et al.                                                         World Journal of Pharmaceutical Research 

(azoles), ergosterol (polyenes) and -1,3-glucan synthetase (echinocandins). Azoles 

antifungals interfere with cell membrane ergosterol synthesis via inhibition of cytochrome 

P450 14-α-sterol demethylase enzyme.
[2,3]

 The natural substrate lanosterol is prevented 

through binding of the azole ring to the iron of porphyrin.
[4]

 Limitations in their clinical 

applications include narrow spectrum (fluconazole), variable bioavailability (itraconazole), 

drug interactions, e.g. with cyclosporin, and emergence of drug resistance.
[5] 

With the 

increase in the incidence of fungal infections and rise in azole resistance, there is urgent need 

for new potent antifungals. In the absence of crystal structure of Candida albican cytochrome 

P450 dependent 14-α-demethylase (CA-CYP51), the rational design of new antifungals has 

been carried out using various methods such as homology modeling,
[6]

 pharmacophore 

modeling
[7]

 and quantitative structure activity relationship studies.
[8-9] 

 

Recently, Di Santo et al
[10]

 reported the synthesis and QSAR of a series of N-substituted 

derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole. In order to validate their 

pharmacophore models and gain further insight into the structure activity relationship, we 

applied a three dimensional quantitative structure activity relationship (3D QSAR) models for 

the same series using Comparative Molecular Field Analysis (CoMFA)
[11]

 and genetic 

function approximation (GFA).
[12]  

 

CoMFA is one of the methods of rational drug design, which has been successfully applied in 

our laboratory for N-myristoylase inhibitors,
[13] 

antihyperglycemic agents,
[14]

 HIV-1 integrase 

inhibitors
[15]

 and squalene epoxidase enzyme inhibitors.
[16]

 The CoMFA approach has found 

wide application in drug design. 

  

GFA, a genetic algorithm, generates a population of equations rather than one single 

equation, in correlating biological activity with physicochemical descriptors. GFA, as 

developed by Rogers,
[17]

 involved combination of Friedman‟s multivariate adaptive 

regression splines (MARS) algorithm with Holland‟s genetic algorithm to evolve a 

population of equations that best fit the training set data. GFA models, which provide useful 

additional information such as relevance of a particular descriptor in the model and activity 

prediction, have been applied in the past to various therapeutic areas.
[18-19] 
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Experimental Section 

Biological data 

Sixty-six molecules selected for the present study were taken from the published work by Di 

Santo, et. Al.
[10] 

The structure of the compounds and their biological data are given in Table 1. 

The antimycotic activity against C. albicans was expressed as the minimum inhibitory 

concentration (MIC) in terms of (µmol/mL). In this QSAR study, the biological activity of 

each compound has been expressed as negative logarithm of MICmean (ratio of 

MICcompd/MICbifonazole). Thus the data correlated linearly to the free energy change. 

Fluconazole was not considered either for generation or validation of QSAR models, as is 

doesn‟t have imidazole ring, which is common to all other structures. A training set of fifty 

molecules (Table 1) was used for generation of QSAR models. The training set molecules 

were selected in such a way that it contains information in terms of both structural features 

and activity ranges. The most active compounds were included so that they provide critical 

information on pharmacophore requirements. Several moderately active and inactive 

compounds were also included to spread the activity ranges. A test set of fifteen molecules 

(indicated by *, Table 1) was used to access the predictive ability of the generated models. 

The test molecules represent range of biological activity similar to training set.  

 

Table 1. Structures and activities of the molecules in the training and test sets. 
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Compd. 

No. 
Scaffold R R1 X 

MICcompd/MICbifonazole
 

a                    b 

1 A Ph 4-Cl H 0.660 0.180 

2 A Ph 4-Cl CH3 0.025 1.602 
3 A Ph 4-Cl C2H5 0.110 0.959 

4 A Ph 4-Cl C3H7 0.023 1.638 

5 A Ph 4-Cl CH2-c- C3H7 0.025 1.602 

6 A Ph 4-Cl CH=CH2 0.031 1.509 

7 A Ph 4-Cl CH2-CH=CH2 0.019 1.721 

8 A Ph 4-Cl CH2-CH=C(CH3)2 0.043 1.367 

9 A Ph 4-Cl CH=CH-COOCH3 0.340 0.469 
10 A Ph 4-Cl Ph 1.500 -0.176 

11* A Ph 2,4-Cl2 CH3 0.11 0.959 

12 A Ph 2,4-Cl2 C2H5 0.330 0.481 

13* A 2,4-Cl2-Ph 4-Cl H 0.920 0.036 

14 A 2,4-Cl2-Ph 4-Cl CH3 0.280 0.553 

15 A 2,4-Cl2-Ph 4-Cl C2H5 0.310 0.509 

16 A 2,4-Cl2-Ph 4-Cl C3H7 1.700 -0.230 

17 A 2,4-Cl2-Ph 4-Cl CH2-CH=CH2 0.150 0.824 

18* A 2,4-Cl2-Ph 4-Cl CH2-CH (OCH3)2 0.480 0.319 

19 A 2,4-Cl2-Ph 2-Cl CH3 0.360 0.444 

20 A 2,4-Cl2-Ph 2,4-Cl2 CH3 2.900 -0.462 

21 A 2,4-Cl2-Ph 2,4-Cl2 C2H5 0.230 0.638 

22 A 2,4-Cl2-Ph 2,4-Cl2 CH2-CH=CH2 0.120 0.921 

23 A 4-CH3-Ph 3,4-Cl2 CH3 0.190 0.721 

24 A 4-CH3-Ph 3,4-Cl2 C2H5 0.470 0.327 

25 A 2,4-Cl2-Ph 4-(1-pyrrolyl) CH3 0.620 0.207 

26* A 1-naphthyl H H 1.700 -0.230 

27 A 2-naphthyl H H 3.800 -0.579 

28* A 2-naphthyl H CH3 63.00 -1.799 

29 A 1-naphthyl H CH3 6.000 -0.778 

-0.633 30 A 2,4-Cl2-Ph 4-Ph H 4.300 -0.633 

31 A 2,4-Cl2-Ph 4-CF3 H 2.200 -0.342 

32 A 2,4-Cl2-Ph 4-CN H 4.300 -0.633 

33 A 2,4-Cl2-Ph 4-NO2 H 4.500 -0.653 

34* A 2,4-Cl2-Ph 4-NH2 H 28.00 -1.447 

35 A 2,4-Cl2-Ph 4-(1-pyrrolyl) H 1.300 -0.114 

36* A 2,4-Cl2-Ph 4-OH H 26.00 -1.415 

37 A 2,4-Cl2-Ph 4-SCH3 H 28.00 -0.441 

38* B H 

 

0.210 0.678 

39 B CH3 0.940 0.027 

40 B C2H5 1.100 -0.041 

41* C 2,4-Cl2 1.000 0.00 
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42 C 4-NH2 1.400 -0.146 
43 C 3-(1-pyrrolyl) 45.00 -1.653 

44 C 2-Cl 63.00 -1.799 

45* C 3-F 51.00 -1.708 

46 

47 
C 2-NO2 97.00 -1.87 

47 C 2-(1-pyrrolyl) 7.800 -0.892 

48 C 4-NO2 17.00 -1.230 

49* C 3-Cl 44.00 -1.643 

50 C 2-F   49.00 -1.690 
51 C 4-F   23.00 -1.361 

52* 

N

N

N  

6.800 -0.833 

53 D H H  2.300 -0.362 

54* D CH3 H  1.200 -0.079 

55 D Cl Cl  7.300 -0.863 

56 D F Cl  2.800 -0.447 

57 D H Cl  0.700 0.155 

58* D CH3 F  3.100 -0.491 

59 D Cl F  2.700 -0.431 
60 D H F  1.800 --0.255 

61* D F H  4.100 -0.613 

62 D CH3 Cl  1.100 -0.041 

63 D F F  1.400 -0.146 

64 Bifonazole   1.000 0 

65 Miconazole   0.140 -0.854 

a = experimental MICcompd/MICbifonazole in terms of mol/mL, b = -log (MICcompd/MICbifonazole),  

* indicates test set compounds 

 

Computational details 

CoMFA study 

All computational studies were performed using SYBYL 6.9.1
[20]

 with standard Tripos force 

field.
[21]

 The compounds were constructed from the fragments in the SYBYL database with 

standard bond lengths and bond angles. The chirality of asymmetric center was not specified 

as enantiomers were not specified. Geometry optimization was carried out using the standard 

Tripos forcefield with distance dependent-dielectric function and energy gradient of 0.001 

kcal/mol Å. The initial conformations were obtained from systematic search. The lowest 
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energy conformers were selected and minimized by using Powell method till root-mean-

square (rms) deviation 0.001 kcal/mol Å was achieved. Partial atomic charges required for 

calculation of the electrostatic interaction were computed by semiempirical molecular orbital 

method using AM1 in MOPAC program.  

 

Alignment rules   

The “alignment rule”, i.e., the positioning of a molecular model with the fixed lattice, is by 

far the most important input variable in CoMFA, since the relative interaction energies 

depend strongly on relative molecular positions. The most active molecule (07) was used as 

template for aligning the other molecules.  

 

In the present study, we have superimposed molecules by three alignment rules: (1) Atom-

based alignment, (2) Multifit alignment, (3) Field fit alignment (1) This was done by atom-

based fitting of the atoms to the most active molecule, compound 07. The 11 heavy ring 

atoms (azole and phenyl ring attached to the asymmetric carbon atom) of the molecules were 

used for rms fitting, as shown in Fig. 1.  

 

N

N

N

Cl

 

Fig. 1. Molecule 07 with atoms used for superimposition are marked in red. 

 

(2) In this case, alignment of the molecules was carried out by flexible fitting (multifit) of 

atoms, of the molecules to the template molecule, compound 07. This involved energy 

calculations and fitting onto the template molecule by applying force (force constant 20 

kcal/mol) and subsequent energy minimization. 

 

(3) This was carried out using the SYBYL QSAR rigid body field fit command within 

SYBYL and using compound 07 as template molecule.  
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Generation of CoMFA fields  

For each alignment, the steric and electrostatic potential fields for CoMFA were calculated at 

each lattice intersection of a regularly spaced grid of 2.0 Å in all X, Y and Z directions. The 

van der Waals potential (Lennard-Jones,
 

6-12) and columbic term, which represent, 

respectively, steric and electrostatic fields, were calculated using the Tripos force field. A 

distance-dependent dielectric constant of 1.0 was used. A sp
3
 carbon atom with van der 

Waals radius of 1.52 Å and + 1.0 charge was served as the probe atom to calculate steric and 

electrostatic fields. The steric and electrostatic contributions were truncated to ±30 kcal/mol, 

and the electrostatic contributions were ignored at lattice intersections with maximum steric 

interactions.  

 

Partial Least Square (PLS) analysis 

PLS
[22-23]

 was used in conjugation with the cross-validation (leave-one-out) option to 

determine the optimum number of components. Final 3D-QSAR model without cross-

validation was done using the optimal number of components. The results from cross-

validation analysis were expressed as the cross-validated r
2
 value (r

2
cv), which is defined as, 

                                      PRESS 

              r
2

cv = 1 -     

                                  (Y –Ymean)
2 

 

where PRESS =  (Y –Ypred)
2   

  

The number of components that result in the highest r
2

cv and lowest standard error of 

predictions (SEP) were taken as the optimum. Equal weights were assigned to steric and 

electrostatic fields using CoMFA_STD scaling option. To speed up the analysis and reduce 

the noise, a minimum filter value “” of 2.0 Kcal/mol was used. The leave one out (LOO)
[24]

 

method of cross-validation is rather obsolete and it generally gives high r
2
 value. Final 

analysis was performed to calculate the r
2

conv with a number of cross-validation groups set to 

zero using the optimum number of components. To further assess the robustness and 

statistical confidence of the derived models, bootstrapping analysis (100 runs) was 

performed. The statistical results obtained for CoMFA analysis are shown in Table 2.  
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Table 2. Summary of CoMFA results. 

 Alignments 

 1
a
 2

b
 3

c
 

d
r

2
cv 0.725 0.667 0.565 

Components 6 4 7 

SEP
 

0.516 0.556 0.657 

r
2

con
 

0.939 0.913 0.921 

SEE 0.244 0.284 0.280 

F Value 109.534 118.251 70.066 

Contrib. Steric 0.568 0.561 0.540 

Electrostatic 0.432 0.439 0.460 

r
2

pred 0.518 0.512 0.511 

r
2

BS 0.964 0.945 0.943 
a
Alignment by RMS fit, 

b
Alignment by Multi fit, 

c
Alignment by Field fit, 

d
cross-validated r

2
 

value was obtained from leave-one-out method.  

 

Leave half out (LHO)
[25] 

method of cross-validation was performed for RMS fit analysis of 

CoMFA. In this case, the data set is randomly divided into two groups, and the activity of the 

compounds from one group is predicted using the model from the other group. The process of 

group cross-validation was performed 100 times. The final r
2

cv value was calculated by taking 

the mean of 100 runs. The r
2

cv obtained from LOO and LHO were compared for each PLS 

analysis. In each case the optimum number of components was found to be the same as that 

obtained by the LOO cross-validation procedure. The statistical results obtained from LHO 

for CoMFA analysis are shown in Table 3. 

 

Table 3. Results of analysis with cross validation for 2 and 5 groups and randomized    

biological activities for RMS fit 

Sr. No r
2
cv for 2 groups

a
 r

2
cv for 5 groups

b 
Randomized r

2 c
 

Mean 

SD 

High 

Low 

0.532 

0.086 

0.764 

0.439 

0.541 

0.055 

0.701 

0.504 

-0.185 

0.203 

0.057 

-0.066 
 a
Cross-validated r

2
 for 2 groups with optimum number of components, average 25            

runs 

b
Cross-validated r

2
 for 5 groups with optimum number of components, average 25             

runs 

 c
Cross-validated r

2
 with randomized biological activity, average of 25 runs 

 



www.wjpr.net                                   Vol 4, Issue 1, 2015. 

 

1681 

 

Vithal et al.                                                         World Journal of Pharmaceutical Research 

To check the probability of chance correlation, PLS analysis was performed by 

randomization of the biological activity. This was done by randomly changing biological 

activity data and performing PLS analysis to calculate the r
2

cv value for RMS fit of CoMFA. 

The process was repeated 100 times. Further cross validation with 5 groups was also carried 

out. The results are indicated in Table 3.  

 

Predictive r
2
 value (r

2
pred) 

To validate the derived CoMFA models, biological activities of the test set molecules were 

predicted using models derived from training set. 

 

Predictive r
2
 value was calculated using formula 

        r2
pred = 

SD - PRESS
SD

 
 

Where SD is the sum of squared deviation between the biological activities of the test set 

molecule and the mean activity of the training set molecules and PRESS is the sum of 

squared deviations between the actual and the predicted activities of the test molecules.   

 

Model building using GFA 

All the models were developed using Cerius2 (version 4.10L) running on running Linux Red 

Hat Enterprise WS 3.0 on Intel Pentium IV 3.0 GHz processor.
[26] 

Structures were 

constructed and partial charges were assigned using the charge equilibration
 
method within 

Cerius2.  Throughout the study Universal forcefield 1.02 was used.
[27]

 The molecules were 

subsequently minimized using smart minimizer until root mean square deviation 0.001 

kcal/mol Å was achieved and used in the study.
[28]

  

 

Conformational sampling 

The local minimized geometry was used as the initial structure for conformational analysis. 

Conformational ensembles were generated by random sampling using a rotation increment of 

10
0
 for all the torsional angles. In order to restrict the number of conformers being generated 

to maximum of 50, conformers with an energy threshold value of greater than 5 kcal/mol 

from the local minimized structure were rejected, thus selecting only energetically stable 

conformers. 
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Calculation of descriptors 

Different physicochemical descriptors were calculated for each molecule in the study table 

using default settings within Cerius2. These descriptors included electronic, spatial, 

structural, thermodynamic and molecular shape analysis (MSA). The lowest energy 

conformer of compound 07 was taken as the reference for calculation of MSA. A complete 

list of descriptors used in the study is given in Table 4.  

 

Table 4.  Descriptors used in the GFA analysis. 

Sr. No Descriptor Type Description 
1 DIFFV MSA Difference volume 
2 COSV MSA Common overlap steric volume 
3 Fo MSA Common overlap volume ratio 

4 NCOSV MSA Non-common overlap steric volume 
5 ShapeRMS MSA RMS to shape reference 

6 SR Vol MSA Volume of shape reference compound 
7 Vm Spatial Molecular volume 
8 Area Spatial Molecular surface area 

9 Density Spatial Molecular density 
10 RadOfGyr Spatial Radius of gyration 

11 PMI-mag Spatial Principal moment of inertia 
12 Charge Electronic Sum of partial charges 

13 Apol Electronic Sum of atomic polarizabilities 
14 Dipole-mag Electronic Dipole moment 

15 HOMO Electronic Highest occupied molecular orbital energy 
16 LUMO Electronic Lowest unoccupied molecular orbital energy 

17 Sr Electronic Super delocalizability 
18 MW Structural Molecular weight 
19 RotlBonds Structural Number of rotatable bonds 
20 HbondAcc Structural Number of hydrogen bond accepters 

21 HbondDon Structural Number of hydrogen bond donors 
22 AlogP Thermodyna

mic 

Logarithm of partition coefficient 

23 Fh2o Thermodyna

mic 

Desolvation free energy for water 
24 Foct Thermodyna

mic 

Desolvation free energy for octanol 

25 Hf Thermodyna

mic 

Heat of formation 
26 molRef Thermodyna

mic 

Molar refractivity 

27 Kier1 Topological Kier index first order 
28 Kier2 Topological Kier index second order 

29 Kier3 Topological Kier index third order 
30 Energy Electronic Energy 

 

Generation of QSAR models 

QSAR analysis establishes relationship between physicochemical properties and biological 

activity of the compounds studied. In the present study, QSAR model generation was 

performed by GFA technique using 25,000 crossovers, smoothness value of 1.00 and other 



www.wjpr.net                                   Vol 4, Issue 1, 2015. 

 

1683 

 

Vithal et al.                                                         World Journal of Pharmaceutical Research 

default settings. GFA was asked to consider, not more than four terms in the equation. The 

set of equations generated was evaluated on the following basis. 

a. Lack of fit (LOF)  

b. Variable terms in the equation 

c. Predictivity of the equation (predictive r
2
 value) 

Cross-validated r
2
 values (r

2
cv) were calculated using the cross-validation test option in 

statistical tools supported within Cerius2. 

 

RESULTS 

CoMFA 

The CoMFA method was applied to derive a 3D-QSAR model for N-substituted derivatives 

of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole with antifungal activity. The 

negative logarithm of MICmean  was used as biological activity in 3D-QSAR study (Table 1). 

Conformation of the molecules used in the study was obtained by systematic search and 

lowest energy conformer was selected and minimized using Powell method to rms 0.001 

Kcal/mol Å. 

 

Alignment of the molecules was carried out using three techniques, namely RMS fitting 

(atom-based), multifit (flexible fitting) and SYBYL QSAR rigid body field fit. The most 

active molecule (07) was used as the template molecule for alignment (Fig. 1). CoMFA 

models were generated using a training set of fifty molecules (Table 1), with column filtering 

value ( min) 2.0. A training set of fifteen molecules (Table 1) was used to check the external 

predictivity of the models.  

 

The atom-based alignment exhibited r
2

cv of 0.725 with six components, conventional r
2
 

(r
2

conv)
 
of 0.939, predictive r

2
 (r

2
pred) of 0.518, F value of 109.30. CoMFA models generated 

for multifit alignment showed r
2

cv of 0.667 with five components, r
2

conv of 0.913, r
2

pred of 

0.512, F value of 118.25. Realignment of the molecules by field fit with respect to the fields 

of template molecule (molecule 07) yielded r
2

cv of 0.565 with six components, r
2

conv of 0.921, 

r
2

pred of 0.511, F value of 70.06. The external predictive ability, r
2

pred of the three CoMFA 

models are equally good, the model generated with atom-based alignment with good internal 

predictive ability (r
2

cv = 0.725) and small standard error of estimate (SEE = 0.244) was 

selected as the best model to explain SAR and to carry out further analysis. Results obtained 
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from the three different alignments are shown in Table 2. Observed and predicted biological 

activities of the training and test sets are plotted in Fig. 2 and Fig. 3 respectively.   
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Fig. 2.   Graph of observed activity versus predicted activities of training set molecules 

from multi fit alignment of CoMFA analysis, activity expressed as -log 

(MICcompd/MICbifonazole).  
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Fig. 3.  Graph of observed activity versus predicted activities of test set molecules from 

multi fit alignment of CoMFA analysis, activity expressed as -log 

(MICcompd/MICbifonazole).  

 

To further assess the robustness and statistical confidence of the derived 3D QSAR model, 

bootstrapping analysis was performed and average result of 100 runs is 0.964 (r
2

bs). To 

ascertain the true predictivity of the model a harder test using leave-half-out (LHO) method 

of cross-validation was performed 100 times and the mean r
2
 is 0.764.  Negative value of r

2
cv 

in randomized biological activity test revealed that the results were not based on chance 
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correlation. Results of bootstrapping analysis, LHO and randomization test are shown in 

Table 3. 

 

The results of 3D-QSAR using CoMFA, are represented as “coefficient contour” map. The 

contour maps obtained from RMS fit model are used to explain the SAR of molecules in the 

present study. 

 

GFA 

Different QSAR equations were generated using the GFA algorithm in Cerius2 for a series of 

imidazole antifungals. A total of 50 compounds were used for QSAR model generation 

(Table 1). The predictive power of models was assessed by using test set of 15 compounds 

(Table 1), such that it represents various functional groups included in the training set and 

had an even distribution of biological activity. 

 

For each of the compounds a conformational database was generated from local minimized 

structure by random sampling method.  A total of 34 descriptors were calculated using the 

Cerius2 molecular modeling package. A list of descriptors is summarized in Table 4. 

 

Different sets of equations were generated by altering chain length of the equations. The 

generated equations were evolved by repeating GA runs to check the stability of GFA 

models. The best model was selected on the basis of the values of r2 (square of the 

correlation coefficient for the training set compounds), r
2

cv (crossvalidated r
2
), LOF ( 

Friedman‟s Lack of Fit), r
2

pred (predictive r
2
 for test set compounds). The best QSAR models 

are described in Table 5.  

 

Table 5. QSAR equations generated using genetic function approximation for the 

training set of fifty molecules. 

No Equation LOF r
2 b

r
2

cv 
c
BS r

2 
F-test 

d
r

2
pred 

1 BA = 2.795 – 0.769 CHI-1 + 0.402 

ShapeRMS + 0.904 RadGyr + 0.029 

DIFFV +4.615 Fo 

0.432 0.672 0.608 0.674 18.061 0.391 

2 BA =  5.597 + 4.539 F0 – 0.709 CHI-1 

+ 0.031 DIFFV + 0.501 SapeRMS 

0.422 0.647 0.536 0.648 20.605 0.354 

 

The best model had six descriptors including a constant. The model exhibited good internal 

as well as external predictive ability. Observed and predicted biological activities of the test 

sets are plotted in Fig. 4. 



www.wjpr.net                                   Vol 4, Issue 1, 2015. 

 

1686 

 

Vithal et al.                                                         World Journal of Pharmaceutical Research 

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Actual activity

P
re

d
ic

te
d

 a
ct

iv
it

y

 

Fig. 4.  Graph of observed activity versus predicted activities of test set molecules from 

GFA analysis, activity expressed as -log (MICcompd/MICbifonazole).  

 

DISCUSSION 

Di Santo et al.
[10]

 reported a quantitative pharmacophore model for antifungal azoles. The 

program Catalyst was applied to develop the pharmacophore model.  The model constituted 

by the coordination feature, two hydrophobics, one ring aromatic and two excluded volumes. 

The most active molecules were found to match with all the pharmacophore. The authors 

suggested that the decrease in activities of the other compounds were due to the unmatching 

of pharmacophoric features. We have carried out 3D- QSAR to further validate the model. 

 

CoMFA 

RMS fit takes into account superimposition of the azole moieties as well as the 

superimposition of the phenyl rings common to all compounds. The CoMFA steric and 

electrostatic contour maps of RMS fit are shown in Fig. 5 and 6 respectively. The contour 

plots are to be considered as a representation of the lattice points, where differences in field 

values are strongly associated with difference in receptor binding affinity. It is likely that all 

the compounds studied exert same steric and/or electrostatic influence in certain area.  

 

The maps were obtained using the PLS analysis STDEV* COEFF contouring by their 

contribution and displaying in transparent contour mode. Regions where steric bulk is 

favored are depicted in green while yellow indicates steric bulk is disfavored (Fig. 5), blue 

region depicts positive charge favored areas and red regions where negative charge favored 

areas (Fig. 6). 
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Fig. 5.  CoMFA steric STDEV* contour plots from the atom based fit. Sterically favored 

areas are represented by green polyhedra. Sterically unfavorable areas are represented 

by yellow polyhedra. The active molecule 07 is shown in capped-sticks. 

 

 

Fig. 6. CoMFA electrostatic STDEV*COEFF contour plots from atom based fit. 

Positive charge favored areas are represented by blue polyhedra. Negative charge 

favored areas are represented by red polyhedra. The active molecule 07 is shown in 

capped-sticks. 

 

Fig. 5 depicts the steric contour plot using CoMFA. The sterically favorable green contour is 

found around N-substituent of pyrrole. This explains importance of steric interaction of the 

ligand with the receptor. N-substituted compounds are more active than unsubstituted 
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analogues. This green contour matched with hydrophobic groups in the pharmacophoric 

model developed by authors of the original paper. A large green contours found to surround 

the ortho position of C-4 phenyl ring at pyrrole ring of compound 07. But the para position 

shows sterically unfavorable yellow contours.  This indicates there is a definite substituent 

requirement for steric interactions with the receptor site. This is further supported by 

analyzing compounds 27 to 41. Compound 27 to 30 lacking substituent at phenyl ring, were 

moderately active, while compounds 31 to 41 have bulky substituents at ortho or para 

positions were also less active. The excluded volume maps in pharmacophore model reported 

by Di Santo et al
10

 also emphasize that this region could not contain any atoms or bonds. 

Yellow contours are seen near the carbon joining imidazole and pyrrole ring, which indicates 

that only one carbon atom is required as linkage. If it is replaced by any other linkage like a 

benzyl linkage the activity reduces. Yellow contours are also seen near second phenyl ring 

which indicate substitution at this position will reduce activity. 

 

Fig. 6 displays the electrostatic contour plot using CoMFA. The electrostatically favorable 

red contours are found near N1 of pyrrole and aromatic ring of C-4 position of pyrrole ring. 

These electrostatically favorable contours are flanked with electrostatically unfavorable blue 

region. Red contour near N-1 of pyrrole ring shows the need for electron-rich atom for 

electrostatic interaction with the receptor to show good antifungal activity. Moderate activity 

of the compound 56 is may be due to improper spatial orientation of phenyl ring towards 

sterically favorable region.  It is observed that compounds having aliphatic substituents are 

more active. 

 

A red contour near the C-4 phenyl ring at pyrrole explains the need of an electron-

withdrawing group to show potent antifungal activity. An aromatic ring having electron-

withdrawing group is known to interact with another aromatic ring more strongly than does 

an unsubstituted aromatic ring. Compounds 01 to 20, showed highest activity due to the 

presence of electron-withdrawing group than the unsubstituted aromatic compound 27-30. 

This explains the need of strong hydrophobic substituent with electron-withdrawing capacity. 

The electrostatic blue contours are observed near ortho position of second phenyl ring and 

imidazole moiety a blue electrostatic contour is observed. Both green and red contours are 

observed near pyrrole, which emphasizes need of a pyrrole ring substituted with hydrophobic 

as well as an electron rich group for better antifungal activity. 
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GFA 

The antifungal activity of the series of N-substituted imidazole antifungals is thus a function 

of CHI-1 (Chi indices), ShapeRMS (RMS to shape preference), RadOfGyration (Radius of 

gyration), DIFFV (Difference volume) and Fo (Common overlap volume).  All the 

descriptors indicate the importance of steric interaction of the ligand with the receptor for 

good antifungal activity. 

 

Positive correlation of ShapeRMS, shape descriptor indicates there is a strict requirement in 

terms of molecular similarity with the reference molecule for volume to show antifungal 

activity. RadOfGyration, a spatial descriptor is positively correlated with the activity. It 

indicates the importance of spatial orientation of the compound for binding with the receptor. 

DIFFV and Fo, MSA parameters, indicate that there is a definite structural requirement for 

receptor binding. Overall steric interactions play a critical role in receptor binding. 

 

In general, the CoMFA models are complimentary to the pharmacophore model developed by 

the authors of the original paper. It emphasizes importance of the N-substituent of pyrrole for 

antifungal activity. Overall steric interactions play a critical role in receptor binding. 

 

CONCLUSIONS 

The CoMFA method has been applied to a set of antifungal agents active against C. albicans. 

The compounds taken for the study belong to chemically diverse families of imidazole 

derivative. The CoMFA model explains the structure-activity relationships in 50 training set 

compounds. It also predicts accurately the biological activity of 15 test set compounds. RMS 

fit gives the best CoMFA model, which is further validated using various statistical methods. 

The CoMFA model gives as insight into binding mode of these imidazole antifungals. QSAR 

models generated using GFA also indicate that structural and spatial parameters are important 

for activity. This QSAR study emphasizes the importance of N-substituted pyrrole in 

interaction of these inhibitors with the enzyme. 
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