

Volume 4, Issue 8, 2719-2723.

<u>Review Article</u>

ISSN 2277-7105

TERPENOIDS FROM CASSIA SIAMEA

Deepa Chauhan¹* and J. Singh²

¹Department of Chemistry M.S.College Saharanpur-247001. ²Chemistry Department University of Allahabad, Allahabad-211002.

SUMMARY

Revised on 10 July 2015, Accepted on 02 Aug 2015

Article Received on 19 June 2015.

*Correspondence for

Author

Deepa Chauhan

Department of Chemistry M.S.College Saharanpur-247001. 2-oxo-1 β , 3 β , 19 α -trihydroxyurs-12-ene-28-oic acid- β -D-glucopyranoside and 1 β , 2 α , 3 β , 19 α tetrahydroxy urs-12-ene-28-oate-3-0- β -D-glucopyranoside are two new triterpenoids isolated from Cassia siamea.

KEYWORDS: Cassia siamea, stem bark, triterpenoids, structure elucidation.

Cassia siamea, a member of fabaceae family is found abundantly in Nothern India, It is a large tree bearing yellow flowers. Investigation of this plant revealed the presence of anthraquinones, terpenoids, alkaloids and flavonoids (1&4).

Cassia siamea has recently been shown to have antimicrobial, antimalarial, antidiabetic, anticancer, hypotensive, diuretic, antioxidant,laxatie, antiinflammatory, analgesic, antipyretic,

anxiolytic, antidepressant & sedative activities. The decoction of the stem bark is used against diabetes. The decoction is used as a mild, pleasant & safe purgative, scabies, urogenital diseases, herpes & rhinitis.

Compound 1: M⁺ 502 was isolated as platelet crystals mp 140-142^oC. The IR spectrum showed the presence of hydroxy groups (3455 cm⁻¹) ester carbonyl (1740 cm⁻¹), carbonyl (1715 cm⁻¹) and double bond (1655 cm⁻¹). It gave positive liebermann-Burchard and Molish tests. On acid hydrolysis it gave D glucose. Comparision of the ¹³CNMR and DEPT spectral data with those 2-oxopolmolic acid showed that their structure are very similar except that compound 1 had OH aditional on gp at C-1 and gluosyl moiety (δ 95.6) at C-28. The ¹HNMR spectrum also showed that glusoyl moeity was linked with the aglycone in the β -configuration (δ 6.23, d, J 7.9 Hz, 1H).

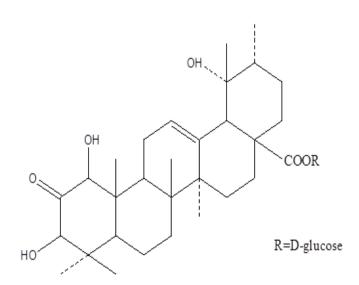
The ¹HNMR spectrum of compound I showed signals for 6 methyl gps as singlets δ 0.70, 0.86, 1.00 1.28 1.30. Signals at 2.57 (1H, 18- β -H) together with secondary methyl group (δ 0.95, d,3H J 7.0Hz) and olefinic proton (δ 5.35, t, 1H, J 3.6 Hz). The α orientation and tertiary hydroxy gp at C-19 was suggested by the chemical shift of Me 29 (δ 1.30) and Me 27 (1.20) signals, which were of the order reported for germinal ($\Delta\delta$ = 0.35) and vicinal ($\Delta\delta$ = 0.14), deshieldings in similar structural environments.(5) The ¹³ CNMR exhibited the presence of a methyl gp as a doublet which shows that compound 1 was 19 α hydroxy urs -12-ene type of terpenoid.

The mass spectral analysis of compound 1a (aglycone) exhibited the peak at m/z 264 derived from the D/E ring and that at m/z 237 from the A/B ring formed through the characteristic retero Diels Alder fragmentation of C indicated the presence of 2 hydroxyl gp in A/B ring system and one hydroxy gp. D/E ring system.(2)

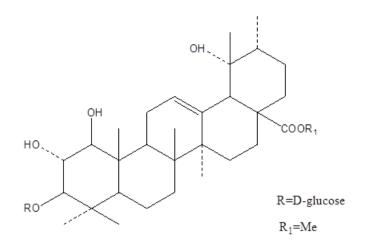
Compound 2 : C_{36} H₅₈ O₁₀ mp - 138° on acid hydrolysis with 7% H₂SO₄ it gave aglycone. 2a. The sugar was identified as D-glucose on the basis of co-paper chromatography with an authentic sample. IR spectra of compound 2a showed absorption due to hydroxyl 3400 cm⁻¹, ester carbonyl 1712 cm⁻¹ and trisubstituted double bond 1520 cm⁻¹. The mass spectra of compound 2a M⁺ 518. Two main fragments at m/z 279 and m/z 240 due to retro Diels Alder fragmentation of ring C. commonly found in spectra urs-12-ene derivatives possessing a hydroxyl and a carbonyl groups in rings D/E. This was confirmed by peaks at m/z 261 [279- H_2O]⁺, 220 [279-COO CH₃]⁺ and 201 [264 – H_2O COO CH₂]⁺, other important mass fragment of ions at m/z 179 and 196 were due to tertiary hydroxyl functions on C-19 in an urs –12-ene skeleton (2) The fragmentation pattern (m/z 240) also indicated that three secondary hydroxyl groups were located in the A/B ring portion of the compound.

On acetylation, compound 2a showed signals for three acetoxymethine protons at δ 4.78 (d, 1H, J 10.5 Hz) 4.86 (d,1H, J 9.3 Hz) and 5.15 (dd, 1H, J₁ 10.5 Hz, J₂ 9.3 Hz) which were asignable to C-1 (or C-3), C-3 (or C-1) and C-2 respectively. The J values of these signals indicated transdiaxial correlated protons, hence the hydroxyl groups must be equatorial (3) The structure of compound 2a is also supported by¹³ CNMR spectrum

Extraction of Isolation : Air dried and crushed material was extracted with boiling ethanol. The extract was chromatographed over a dry flash column (silica gel G) yielded compound 1 (0.3g) hexane: benzene (7:3/v/v) and compound 2 (0.4g) with benzene.


Compound 1: mp 140-142° IR bands (KBr) : 3455, 1740, 1715, 1665, 1635, 1235, 1180, 1160, 1010, 940, 835 cm⁻¹; ¹HNMR (CDCl₃ 400 MHz): δ 6.23 (d J 7.9 Hz 1H, H-1 of glu), 5.35 (br.s, 1H, H-12), 5.18 (s, 1H, H-3 α), 2.84 (s, 1H, H-18), 0.70, 0.86, 1.00, 1.20, 1.30 (s, 6x 3H, H-23, 24, 25, 26, 27, 29) 1.06 (J 6.3 Hz, 3H, H-30) 4.41 – 4.00 (m, 6H, sugar H) 4.80 (d, 1H, J 4 Hz, H-1) ¹³CNMR : see table 1, EIMS m/z 502 [M-Glc]⁺ 264, 237, 246, 214, 201.

Compound 2 : $mp - 138^{0}C$ IR bands (KBr : 3450, 1718, 1510, 1375 cm⁻¹, ¹H NMR (CDCl₃, 200 MHz): $\delta 0.67 - 1.20$ (each 6x Me) 0.90 (d, 3H, J 6.4 Hz, Me - 30) 2.55 (brs 1H, 18- β -H) 3.64 (s. 3H-COOMe), 3.0 - 3.7 (m sugar proton), MS 636 (M⁺) 279, 261, 240, 218, 179, 146, ¹³ CNMR CDCl₃, 200 MHz Table 1.


Table 1 ¹³ CNMR	spectral data o	of compound 1	and 2 (200	MHz δ in ppm	from TMS).
----------------------------	-----------------	---------------	------------	--------------	------------

С	1	DEPT	2	DEPT
1.	68.0	CH	68.2	CH
2.	210.7	С	71.0	CH
3.	83.2	CH	88.8	CH
4.	45.6	С	37.6	С
5.	54.7	CH	56.0	CH
6.	19.0	CH_2	18.2	CH_2
7.	33.0	CH_2	33.6	CH_2

Chauhan <i>et al</i> .		World Journal of Pharmaceutical Research		
8.	40.5	С	40.5	С
9.	47.2	CH	47.9	СН
10.	43.5	С	38.3	С
11.	23.7	CH_2	24.4	CH_2
12.	127.6	CH	128.2	СН
13.	139.3	С	139.2	С
14.	42.0	С	42.4	С
15.	29.9	CH_2	29.1	CH_2
16.	25.8	CH_2	26.6	CH_2
17.	48.6	С	48.5	С
18.	54.3	CH	54.5	СН
19.	72.4	С	72.5	С
20.	42.2	CH	42.0	СН
21.	26.4	CH_2	26.1	CH_2
22.	37.4	CH_2	37.5	CH_2
23.	29.5	CH_3	28.7	CH_3
24.	17.2	CH_3	17.6	CH_3
25.	16.3	CH_3	16.7	CH_3
26.	16.7	CH_3	17.2	CH_3
27.	24.5	CH_3	24.5	CH_3
28.	178.9	C	176.5	С
29.	26.7	CH ₃	26.9	CH_3
30.	16.3	CH ₃	15.5	CH ₃
COOMe			53.5	CH ₃

COMPOUND 1

COMPOUND-2

Sugar moieties

	glc-28		glc-3	
1.	95.6	CH	108.1	CH
2.	73.8	CH	73.9	CH
3.	78.6	CH	78.6	CH
4.	71.1	CH	72.0	CH
5.	78.9	CH	79.1	CH
6.	62.2	CH_2	62.3	CH_2

REFERENCES

- 1. Kritikar KR, Basu BP. Indian Medicinal Plant 1975; 2: P 854.
- Poiter P, Das BC, Bai A, Janot M, Pounrat A, Pourrat H. Bull Soc. Chim Fr. 1966; 3458-3465.
- 3. Srivastava M., Singh J. Int. J. Pharmacognosy, 1994; 32: 179-200.
- 4. Chopra RL, Nayar SL, Chopra IC.Glossory of Indian medicinal plants; C.S.I.R. New Delhi, India.p53.
- 5. Pereda MR,Gascon FM; j.of Nat.Prod. 1988; 51: 996.