

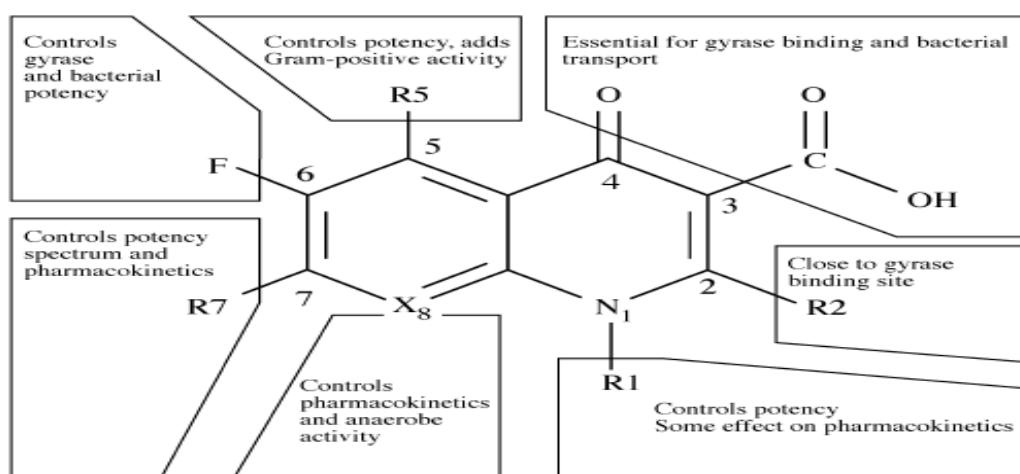
**DESIGN, SYNTHESIS & EVALUATION OF NOVEL SUBSTITUTED FLUOROQUINOLONE-BENZIMIDAZOLE ANTIBACTERIALS****\*Shital J. Patil<sup>1</sup>, Dr. Ashok P. Pingle<sup>2</sup>, Khudabaksha Tamboli<sup>3</sup>.**

Ndmvp Samaja's Collge Of Pharmacy, Nashik-400022

Article Received on  
10 July 2014,Revised on 5 July 2014,  
Accepted on 29 August 2014**\*Correspondence for  
Author  
Dr. Shital J. Patil**  
Ndmvp Samaja's Collge Of  
Pharmacy, Nashik-400022.**ABSTRACT**

The current developments of the chemical and biological aspects of fluoroquinolones in a chronological manner touching upon their antibacterial properties based on the structure- activity relationship while pointing out to their mode of action. . Out of more than 8000 analogues of fluoroquinolones synthesized bearing variety of ring systems, a few dozen have been established in the market, and more are in the horizon to be introduced. Bacterial resistance to fluoroquinolones is seriously challenging the clinical applications of this class of antimicrobial agent. Most of the fluoroquinolones

currently on the market or under development have only moderate activity against many gram-positive cocci, including staphylococci and streptococci. Fluoroquinolones effectiveness is concentration-dependant. It has been shown that in order for bacteria to be highly susceptible to Fluoroquinolones and prevent resistant mutants, the maximum concentration must be 10 times that of the minimum inhibitory (MIC) concentration when treating against gram-positive bacteria. The antibacterial activity of some substituted Benz imidazole derivatives against Gram negative bacteria Escherichia coli was investigated.


**KEYWORDS** Fluoroquinolones, Antibacterial, Gram-positive, Resistant mutants, Benzimidazole.

**INTRODUCTION**

The fluoroquinolones comprise the fastest growing, relatively large, and most interesting group of antibacterial drugs because because of their broad antibacterial spectrum both gram positive and gram negative bacteria and their in-vivo chemotherapeutic efficacy. In multiple species of bacteria, early biochemical evidence indicated that fluoroquinolones damage bacterial DNA and lead to defects in negative supercoiling. This effect was linked to

inhibition of DNA gyrase activity, an enzyme found in all bacteria. In concert with other proteins, gyrase catalyzes changes in the degree of double-stranded DNA supercoiling. In this capacity, it plays a vital role in DNA packing, replication and transcription. The active holoenzyme is a heterotetramer composed of two subunits each of gyrA and gyrB (A2B2). GyrA binds to DNA and mediates strand breakage and rejoining activity, whereas gyrB contains the ATP binding site. GyrA activity involves cleavage of both DNA strands, (mediated by an enzyme-DNA covalent intermediate), passage of DNA through the break and religation of the strand.

### Structure-Activity Relationship

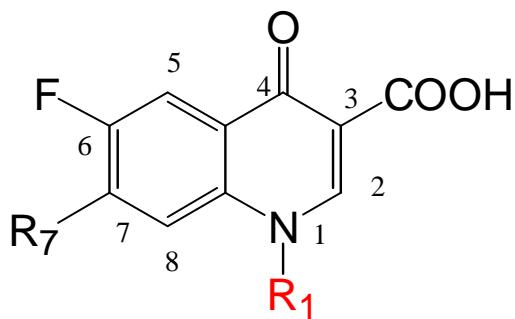


**Figure No: 1 Overview Of SAR of Fluoroquinolone**

### Position 1

Earlier study indicated that substitution at N-1 position is important for Anti-bacterial activity. QSAR analysis of a set of N-1 allyl and alkyl derivatives suggested an optimum STERIMOL length of 0.42 nm, corresponding approximately to an ethyl group.

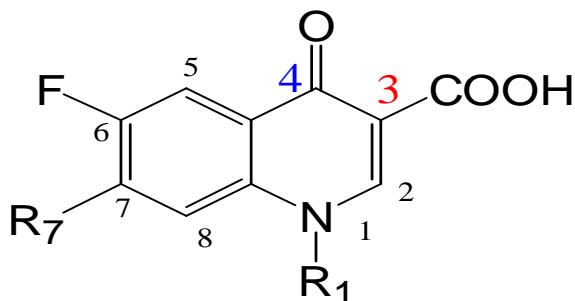
STERIMOL is a program that calculates a set of five parameters


Characterizing size and shape of a substituent.

STERIMOL length is defined as length of substituent along the Axis of bond between the substituent and the parent molecule.

Subsequently, the discovery of potent quinolones with N-1 alkyl and N-1 cyclopropyl substitutions indicated that with respect to an N-1 substituent, in addition to steric bulk, there are other factors such as electronic-  $\pi$  donation and ideal spatial effects that also have a great influence on their biological activities.

Introduction of a t-butyl group at N-1 produced quinolones with enhanced activity against gram positive bacteria with minor reduction of activity against gram negative bacteria.


In general, cyclopropyl group appears to be optimum for activity. e.g. Ciprofloxacin.

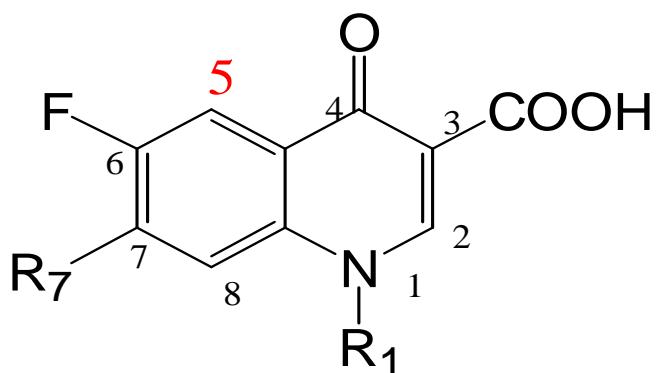


### Position - 3

Position 3 and 4, having a link between the carboxylic acid group and the keto group are generally considered necessary for binding of quinolones to DNA gyrase.

Classical studies have produced no active quinolone with a significant modification of C-3 carboxylic acid group, with exception of groups which are converted in vivo to carboxylic acid group.

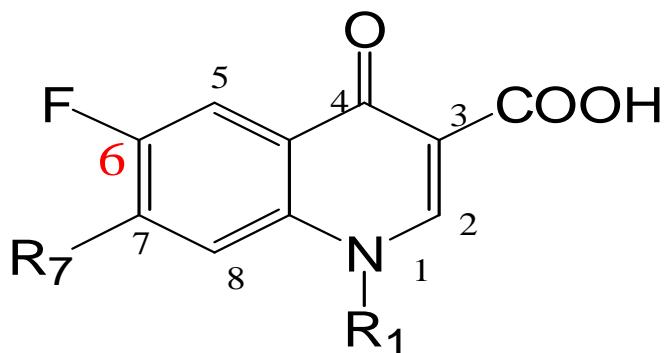



### Position - 4

Position - 4 has not been extensively explored and replacement of 4- keto group with other groups has generally produced inactive or weakly active compounds.

### Position - 5:

Compounds with small substituents such as nitro, amino, halo, alkyl groups have been synthesized. Among them, C-5 amino group enhances absorption and / or tissue distribution. e.g Sparfloxacin .


The incidence of photo toxicity of Sparfloxacin is the lowest of the Fluoroquinolones, because of the presence of the 5- amino group, which counteracts the effect of the 8- fluoro substituent .



#### Position - 6

Of various C-6 substituents, H, Cl, Br, F, CH<sub>3</sub>, S-CH<sub>3</sub>, COCH<sub>3</sub>, CN, NO<sub>2</sub> etc the addition of a fluorine atom resulted in a dramatic increase in anti-bacterial potency.

Fluoro group at C-6 seems to improve both the DNA gyrase complex binding (2 to 17 folds) and cell penetration (1 to 70 folds) of the corresponding derivatives with no substitution at C-

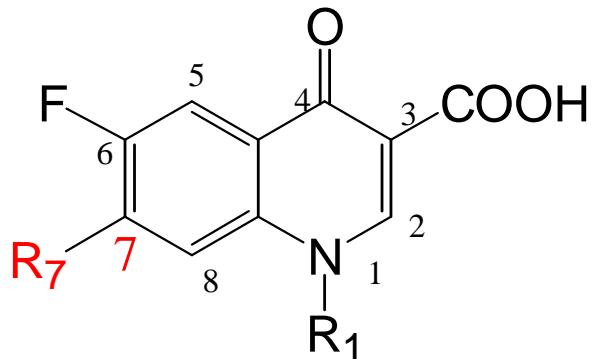


#### Position - 7

C-7 position has great impact modulating potency, spectrum biopharmaceutics and pharmacokinetics.

C-7 substituent is regarded as drug -enzyme interaction domain, it is also concluded that the cell permeability is dominantly controlled by C-7 substituents. It also affect the interaction with target

The inhibition of DNA gyrase and cell permeability of quinolones is greatly influenced by the nature of C-7 substituent on the standard structure of 4-quinolone-3-carboxylic acid


C-7 piperazinyl group in addition to C-6 fluorine substituent has anti-bacterial potency for superior to that of earlier classical quinolones against both gram-positive and gram-negative bacteria.

In general, quinolones with small or linear C-7 substituents (H, Cl, CH<sub>3</sub>, NH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-NH<sub>2</sub>, NH-CH<sub>3</sub>, NH-NH<sub>2</sub>) possess moderate to weak anti-bacterial activities.

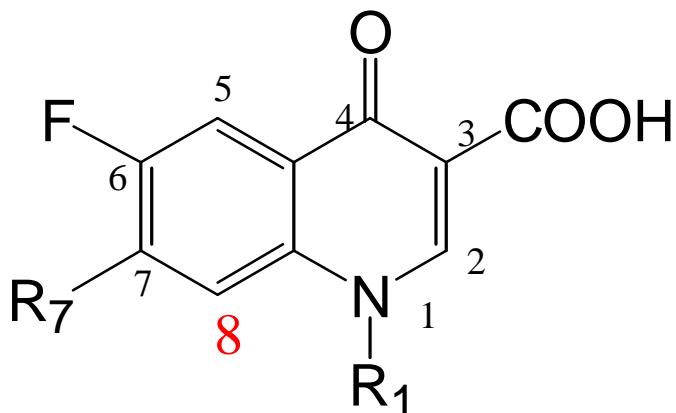
Various substitutions tried at C-7 position are -

- Substituted piperazinyl
- Substituted pyrrolidinyl
- Substituted morpholinyl

The pipeprazine moiety of 7-piperazine quinolones possesses enough structural flexibility to allow product optimization. In general, the substitution of methyl at 4 position of the piperazinyl group enhances gram-positive anti-bacterial activity with slight decrease in gram-negative activity.



#### Position – 8


C-8 fluoro or chloro derivatives are more active

in-vivo, owing to better oral absorption.

Oxygen substituent at C-8 position, where substituent is part of ring system has been shown to have better in vivo efficacy.

C-8 methoxy or ethoxy group appears to increase the spectrum of activity.

C-8 methoxy( e.g. Gatifloxacin ) has been shown to contribute significant activity against anaerobes .



## MODE OF ACTION

Fluoroquinolones antimicrobial agents with highly chemotherapeutic relevance, it is believed that they directly inhibit DNA synthesis and exert their action by inhibiting DNA gyrase and topoisomerase IV, both type second isomerases.

Most fluoroquinolones would have preferential affinity for topoisomerase IV in Gram +ve bacteria such as *Staphylococcus aureus*, but DNA gyrase would be the primary drug target in gram-negative bacteria such as *Escherichia coli*.

In general they act by interfering with the action of bacterial DNA gyrase, which results in the degradation of chromosomal DNA and leads to termination of chromosomal replication and interference with cell division and gene expression.

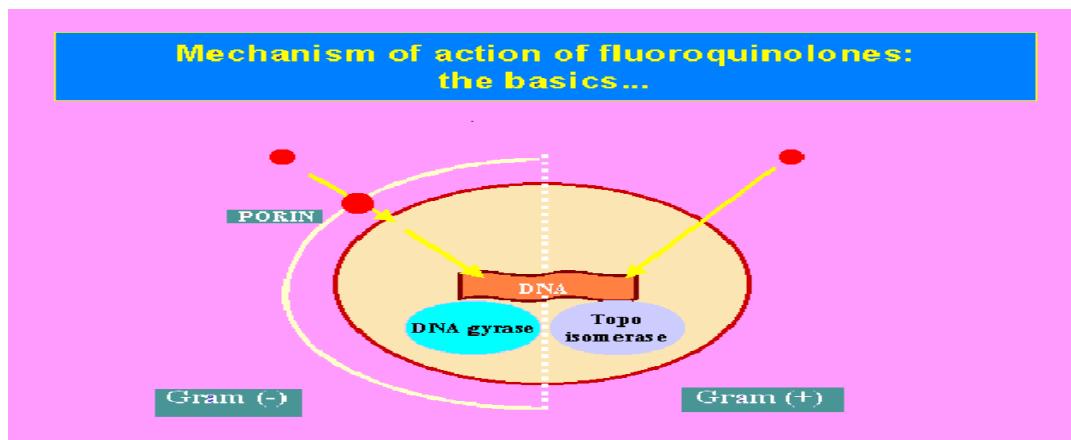



Figure no:2

## EXPERIMENTAL WORK

### Step 1

#### General Procedure For Synthesis Of 2-Chloromethyl Benz Imidazole Derivatives:

##### A) 2 (Chloromethyl) 1*H*benzimidazole<sup>[46]</sup>

O-phenylenediamine (0.13mol), monochloroacetic acid (0.104 mol) and 25 ml of conc. hydrochloric acid were taken in an RBF and refluxed for 8hrs. Reaction was monitored by TLC. A test portion was dumped in water and basified with ammonia solution. The solid was extracted with ether and TLC of this ether extract was checked for the completion of reaction. After completion of the reaction, the reaction mixture was poured in ice-cold water. It was then basified with conc. ammonia solution. The solid precipitated was filtered immediately and dried.

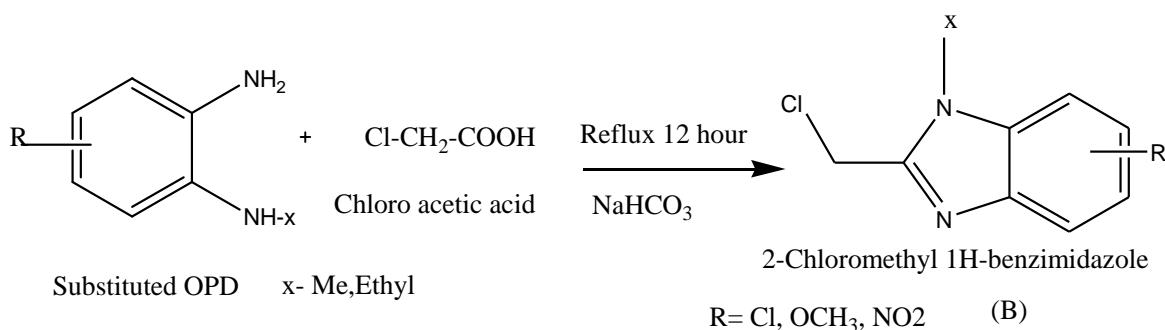



Figure no: 3

## Step 2

### General Procedure For Synthesis Of N<sub>1</sub>.Alkyl / Aryl- Chloro-6-Fluoro-1,4-Dihydro-4-Oxyquinoline-3-Carboxylic Acid

A mixture of 3-chloro-4-fluoroaniline **2a** (0.01 mol) and diethylethoxymethy lenemalonate **2b** (0.01 mol) was heated at 120 -130°C. After 2 h, the resulting EtOH was evaporated off. The crude malonate **2c** was used in the successive reaction without further purification. To crude malonate diphenyl ether (50 mL) was added and refluxed for 2 h. After the solution cooled, the resulting precipitate was filtered off, washed with benzene, and dried. The solid was recrystallized from DMF to give **2d** and characterised by melting point (reported >300, observed >300).

A mixture of **2d** (0.01 mol), K<sub>2</sub>C<sub>0</sub><sub>3</sub> (0.025 mol), alkyl/aryl halide (0.05 mol), and DMF (20 mL) was heated at 80-90 °C with stirring. After 10 h, the mixture was evaporated to dryness and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The CH<sub>2</sub>Cl<sub>2</sub> layer was washed with H<sub>2</sub>O, dried, and evaporated to dryness. The crude product **2e** was used in the successive reaction without further purification. A mixture of crude **2e** (0.0091 mol) and 2 N NaOH (0.05 mol) was refluxed with stirring. After 2 h, the mixture was acidified with AcOH, and the resulting precipitate was filtered off, washed with H<sub>2</sub>O, and dried. The solid was recrystallized from DMF to yield **2f** and characterised by melting point.

A mixture of the product i.e., N<sub>1</sub> substituted 7-chloro-6 -fluoro-1,4-dihydro-4-oxyquinoline-3-carboxylic acid **2f** (2.7 mmol) in dry dimethyl formamide and piperazine (18 mmol) was heated at 140°C with stirring for 2.5-8 hrs. Cooled to room temperature and then 10 ml of cold water was added to the mixture and acidified to pH 7 with dilute acetic acid. The resulting

recipitate **2g** washed with water, dried and recrystallized from DMF. And was characterised by  $^1\text{H}$ NMR, IR and melting point.

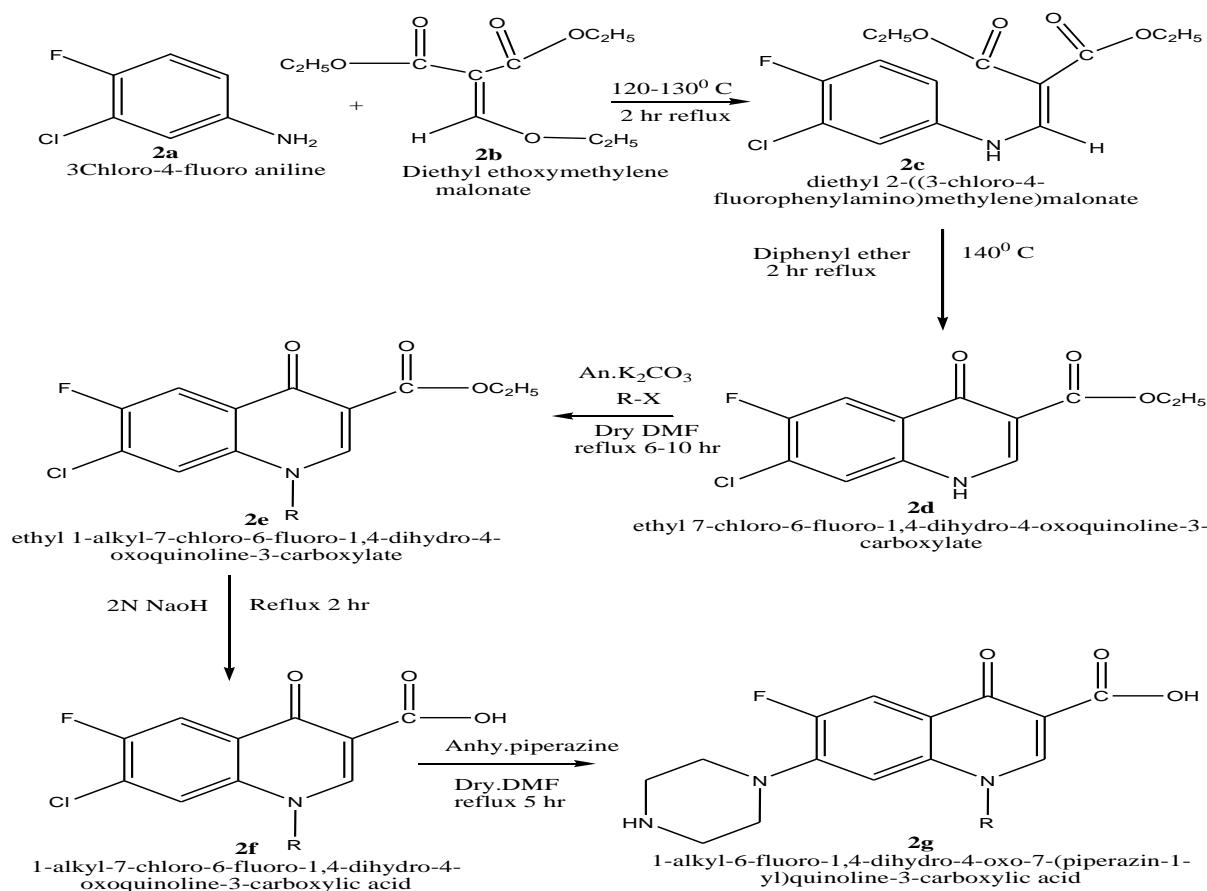
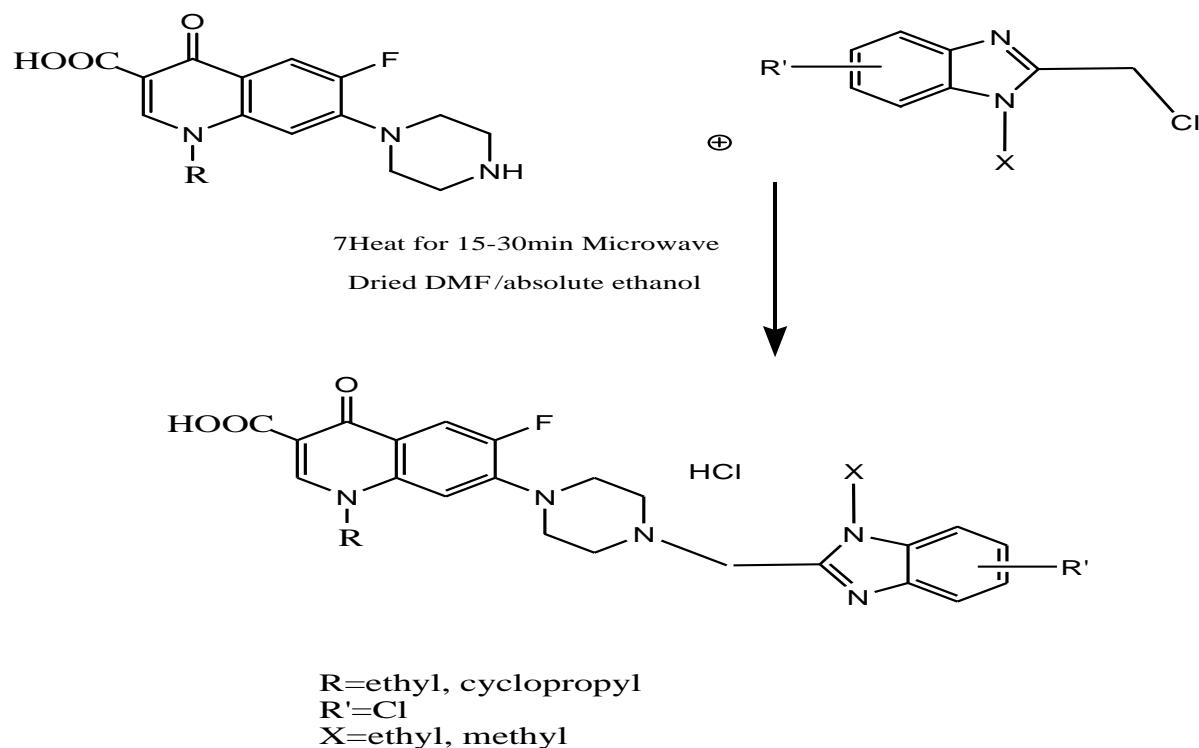



Figure No: 4

| Sr.no | R                              |
|-------|--------------------------------|
| 2g1   | -C <sub>2</sub> H <sub>5</sub> |
| 2g2   | —                              |

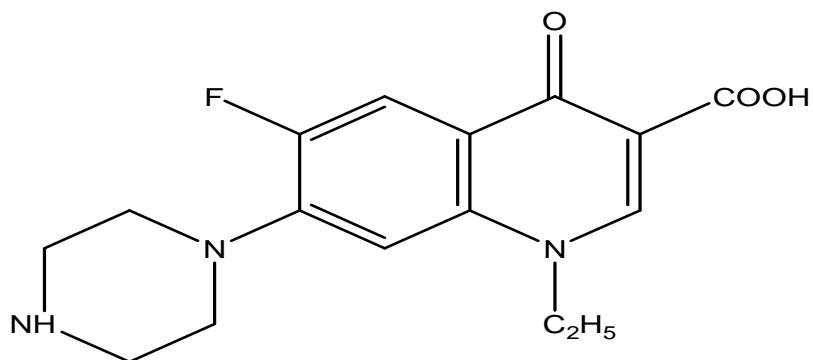

Table No: 1

### Step 3

#### General Procedure For Synthesis of Hybrid Molecules : Microwave Assisted Synthesis

To the mixture of Ciprofloxacin/Norfloxacin/Moxifloxacin (3.31g, 0.01mol, 255°C) in dried absolute ethanol/ Dimethylformamide (DMF) in sufficient quantity and Triethylamine (TEA) (0.025mol, 3.48ml, 89°C) with stirring, substituted Benzimidazole derivatives (0.01 mol) was added. Then above mixture was refluxed for 15 min in microwave. After refluxing, excess solvent was removed in vacuum or with hot air drier and the residue was obtained. The residue was dissolved in suitable solvent and washed with distilled water. Solvent layer separated and dried with the help of anhydrous sodium sulphate or magnesium sulphate.

Dried solvent layer evaporated and the residue washed with methanol and final compound dried (Yield 85%).

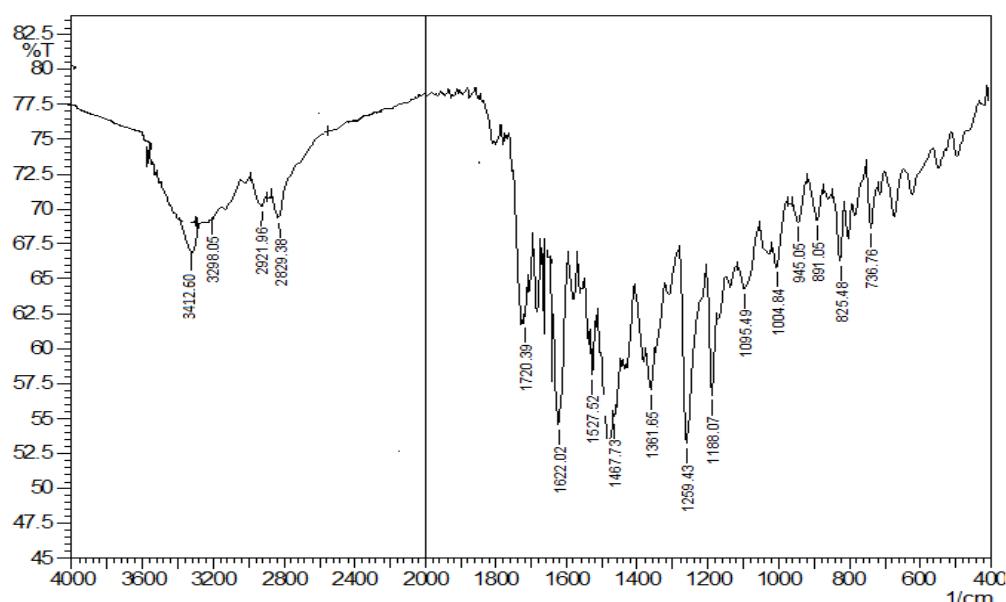



**Figure No: 5**

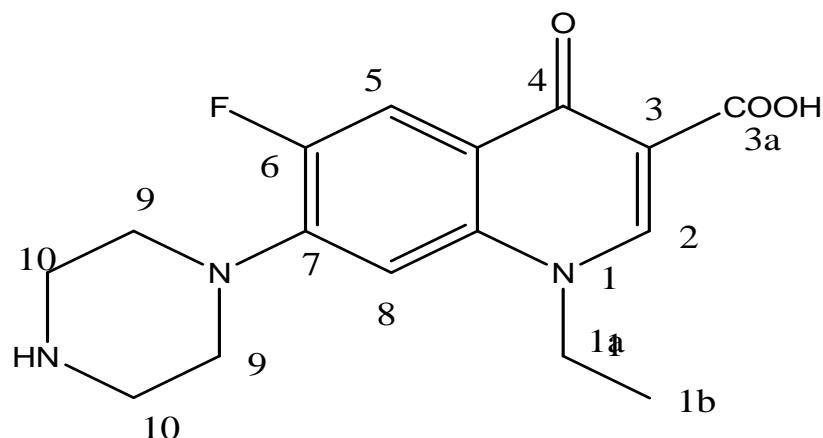
## SPECTRAL ANALYSIS

**Compound Code: 2g1**

Structure




**Figure No: 6**


**Chemical Name:** 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid.

**Molecular Formula:-**  $C_{16}H_{18}FN_3O_3$

**Molecular Weight :-** 319.13

**IR Graph:-****Figure No:7 IR Spectra of Compound Norfloxacin(2g1)****Table No: 2 IR Interpretations of Compound 2g1**

| Sr.no | Observed Frequency $\text{cm}^{-1}$ | Standard Frequency $\text{cm}^{-1}$ | Assingement                       |
|-------|-------------------------------------|-------------------------------------|-----------------------------------|
| 1     | 3412.60                             | 2400-3400                           | O-H Stretch of COOH               |
| 2     | 3298.05                             | 3100-3500                           | N-H Stretch of secondary amine    |
| 3     | 2921.96                             | 2950-3100                           | C-H Stretching of aromatic ring   |
| 4     | 1720.39                             | 1700-1730                           | C=O Stretching, of $-\text{COOH}$ |
| 5     | 1622.02                             | 1670-1600                           | Pyridone C=O Stretch              |
| 6     | 1309.58                             | 1350-1280                           | C-N Stretching of amine           |
| 7     | 1259.43                             | 1320-1210                           | C-O Stretching of acid            |
| 8     | 1188.07                             | 1250-1100                           | C-F Stretching                    |

 **$^1\text{H}$ NMR Spectra of Compound 2g1****Figure No: 9**

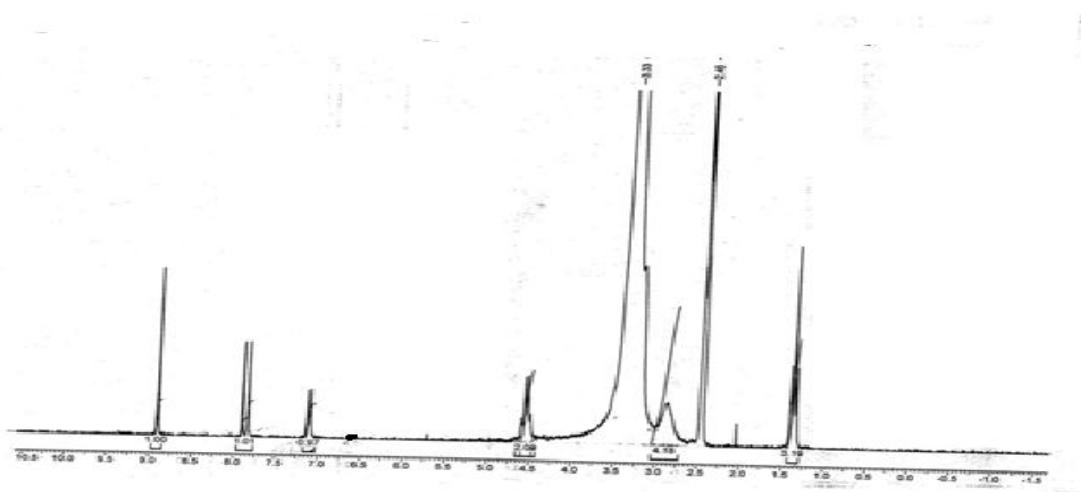


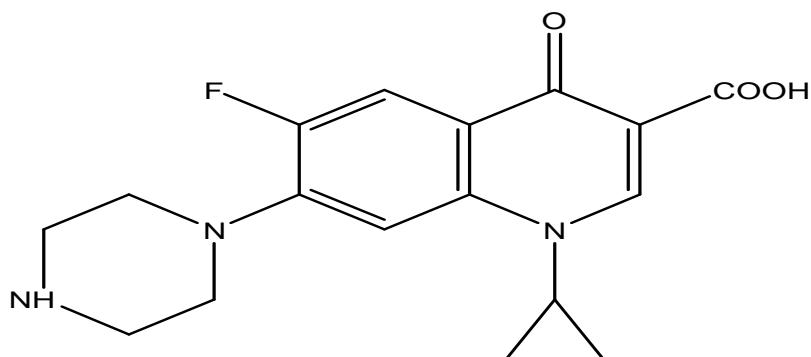

Figure No: 8H<sup>1</sup>NMR of Compound 2g1

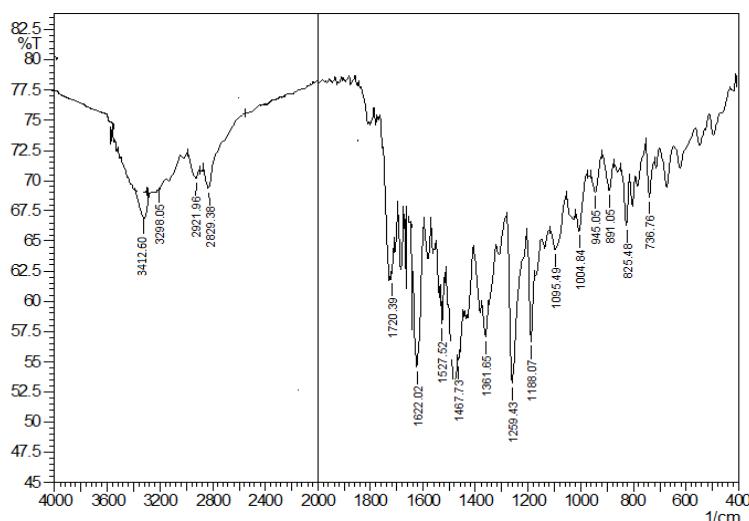
Table: 3 Interpretation of H<sup>1</sup>NMR of Compound-2g1

| Sr. no | Proton Assignment         | Signal    | Delta value(ppm) Observed | Delta value(ppm) Standard | Comment                        |
|--------|---------------------------|-----------|---------------------------|---------------------------|--------------------------------|
| 1.     | 1b (CH <sub>3</sub> -)3H  | Triplet   | 1.50-1.57                 | 0.7-1.3                   | -                              |
| 2.     | 1a (-CH <sub>2</sub> -)2H | Quartet   | 4.46-4.57                 | 4.40-4.88                 | -                              |
| 3.     | 2 (Aromatic)1H            | Singlet   | 8.79                      | 6.5-8.0                   | -                              |
| 4.     | 5 (Aromatic)1H            | Singlet   | 7.90-7.92                 | 6.5-8.0                   | -                              |
| 5.     | 8 (Aromatic)1H            | Doublet   | 7.17-7.21                 | 6.5-8.0                   | -                              |
| 6.     | 9 (Piperazine)4H          | Multiplet |                           | 2.5-3.5                   | Merge in water of solvent peak |
| 7.     | 10 (Piperazine) 4H        | Multiplet | 2.71-2.76                 | 2.5-3.5                   |                                |
| 8.     | Methanol-d4               |           | 2.49                      | 2.50                      | Solvent                        |
| 9.     | Water in methanol d4      |           | 3.33                      | 3.33                      | Water in solvent               |

Compound Code: 2g2

Structure





Figure No: 10

**Chemical Name:** 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo -7-(piperazin-1-yl)quinoline-3-carboxylic acid.

**Molecular formula:-** C<sub>17</sub>H<sub>18</sub>FN<sub>3</sub>O<sub>3</sub>

**Molecular Weight :-** 331.34

**IR Graph:-**



**Fig: 11 IR Graphs of Compound 2g2**

**Table No: 4 IR Interpretations of Compound 2g2**

| Sr. no | Observed Frequency cm <sup>-1</sup> | Standard Frequency cm <sup>-1</sup> | Assingement                      |
|--------|-------------------------------------|-------------------------------------|----------------------------------|
| 1      | 3412.60                             | 2400-3400                           | O-H Stretch of COOH              |
| 2      | 3298.05                             | 3100-3500                           | N-H Stretch of secondary amine   |
| 3      | 2921.96                             | 2950-3100                           | C-H Stretching of aromatic ring. |
| 4      | 1720.39                             | 1700-1730                           | C=O Stretching, of -COOH         |
| 5      | 1622.02                             | 1670-1600                           | Pyridone C=O Stretch             |
| 6      | 1309.58                             | 1350-1280                           | C-N Stretching of amine          |
| 7      | 1259.43                             | 1320-1210                           | C-O Stretching of acid           |
| 8      | 1188.07                             | 1250-1100                           | C-F Stretching                   |

## H<sup>1</sup>NMR Spectra of Compound 2g2

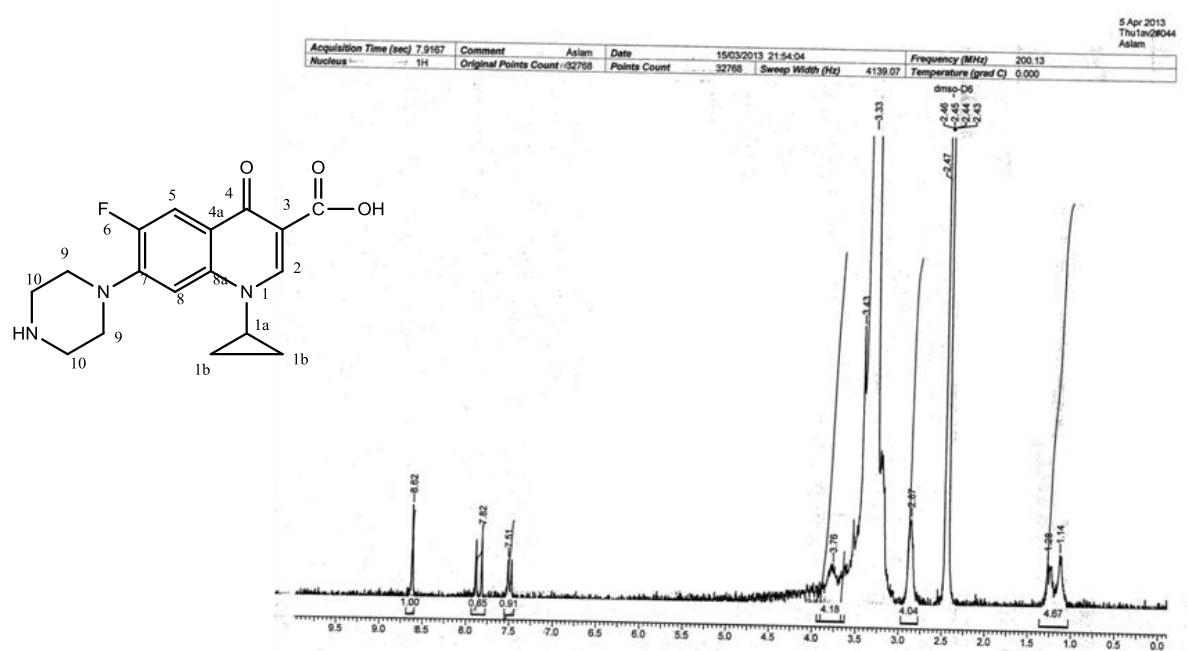
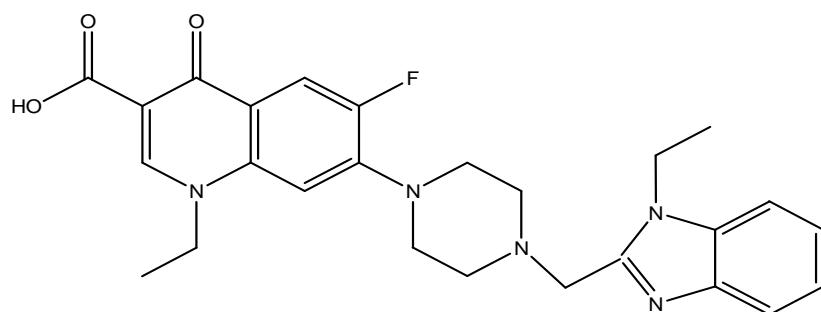




Figure: 12H<sup>1</sup>NMR Spectra of Compound 2g2

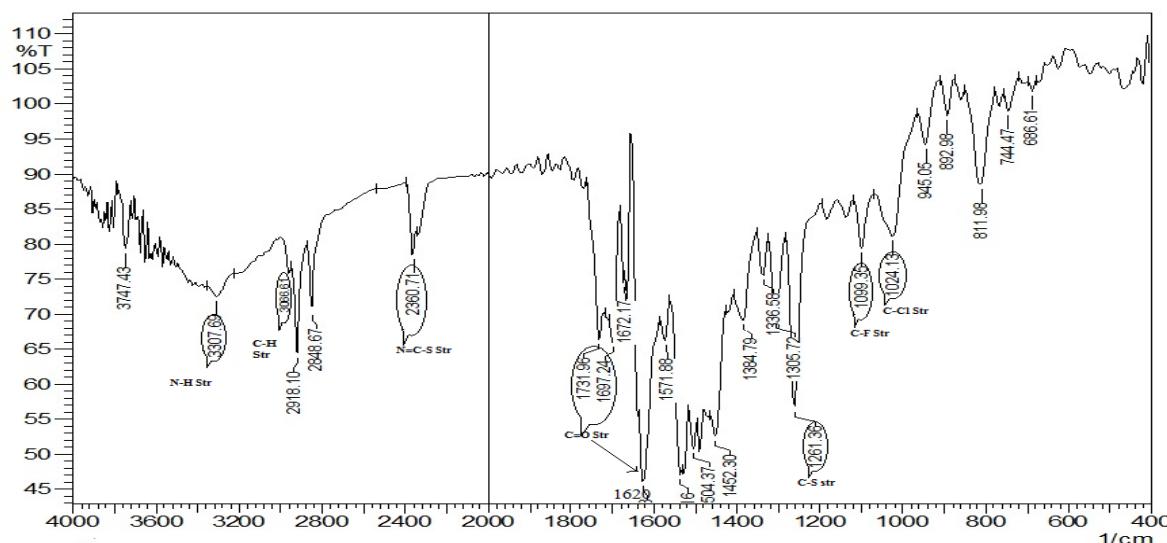
Table No: 5 Interpretation of H<sup>1</sup>NMR of Compound 2g2

| Sr. no. | Proton Assignment         | Signal    | Delta value (ppm) Observed | Delta value(ppm) Standard | Comment                                        |
|---------|---------------------------|-----------|----------------------------|---------------------------|------------------------------------------------|
| 1.      | 1b (-CH <sub>2</sub> -)4H | Multiplet | 1.14-1.28                  | 1.2-1.4                   |                                                |
| 2.      | 1a (-CH-)1H               | Multiplet |                            | 3.5-3.8                   | Might have merge in DMSO-d6 water peak at 3.33 |
| 3.      | 2 (Aromatic)1H            | Singlet   | 8.62                       | 6.5-8.0                   | -                                              |
| 4.      | 5 (Aromatic)1H            | Doublet   | 7.82-7.86                  | 6.5-8.0                   | -                                              |
| 5.      | 8 (Aromatic)1H            | Doublet   | 7.49-7.51                  | 6.5-8.0                   | -                                              |
| 6.      | 9 (Piperazine) 4H         | Multiplet | 3.72-3.76                  | 2.5-3.5                   | -                                              |
| 7.      | 10(Piperazine) 4H         | Multiplet | 2.80-2.85                  | 2.5-3.5                   | -                                              |
| 8.      | 3a (carboxylic) 1H        |           |                            | 11.0-12.0                 | Rarely seen                                    |
| 9.      | DMSO-d6                   |           | 2.45                       | 2.50                      | Solvent                                        |
| 10.     | Water in DMSO-d6          |           | 3.33                       | 3.33                      | Water in solvent                               |

**Compound code:- 1A**



**Figure no: 13**


**IUPAC NAME:-** 7-(4-(1-ethyl-benzimidazole)-2-methyl)-piperazinyl-6-fluoro-1-ethyl-4-quinolone-3-carboxylic acid

**Melting Point:-** 190-195<sup>0</sup>

**Molecular formula:-** C<sub>26</sub>H<sub>28</sub>FN<sub>5</sub>O<sub>3</sub>

**Molecular weight:-** 476

**Fig.No.14: IR Spectra of 1A**



**Table No. 6: IR Interpretation of IR spectra of Compound 1A**

| SR. NO. | OBSERVED FREQUENCY cm <sup>-1</sup> | STANDARD FREQUENCY cm <sup>-1</sup> (46) | ASSIGNMENT                    |
|---------|-------------------------------------|------------------------------------------|-------------------------------|
| 1       | 3066.61                             | 3150-3050                                | Aromatic C-H Stretching       |
| 2       | 3380                                | 3500-3100                                | N-H stretching amine          |
| 3       | 2848.67                             | 2863-2843                                | -CH <sub>2</sub> - Stretching |
| 4       | 2858.05                             | 2863-2843                                | -CH <sub>2</sub> - Stretching |
| 5       | 1731.96                             | 1730-1700                                | C=O Stretching in acid        |
| 6       | 1668.31                             | 1680-1630                                | Aromatic C=C Stretching       |
| 7       | 1620                                | 1670-1600                                | C=O Stretching in ketone      |

|    |         |           |                                           |
|----|---------|-----------|-------------------------------------------|
| 8  | 1672.17 | 1690-1640 | C=N Stretching                            |
| 9  | 1099.36 | 1250-1100 | C-F Stretching                            |
| 10 | 892.98  | 900-860   | C-H bending (one adjacent hydrogen atoms) |
| 11 | 811.98  | 860-800   | C-H bending (two adjacent hydrogen atoms) |

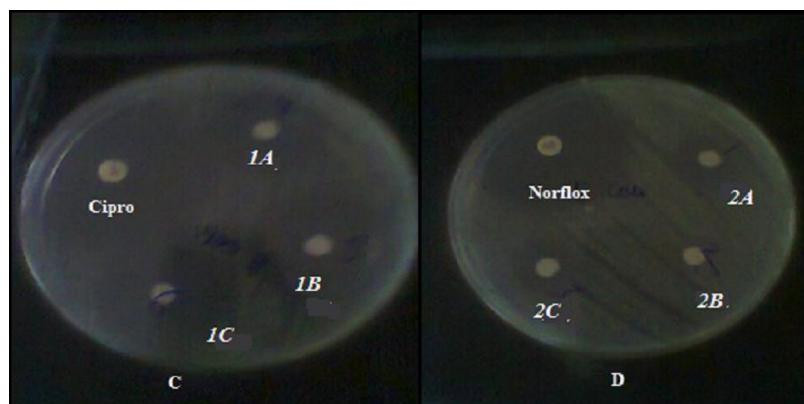
## BIOLOGICAL SCREENING

### Antimicrobial Susceptibility Test

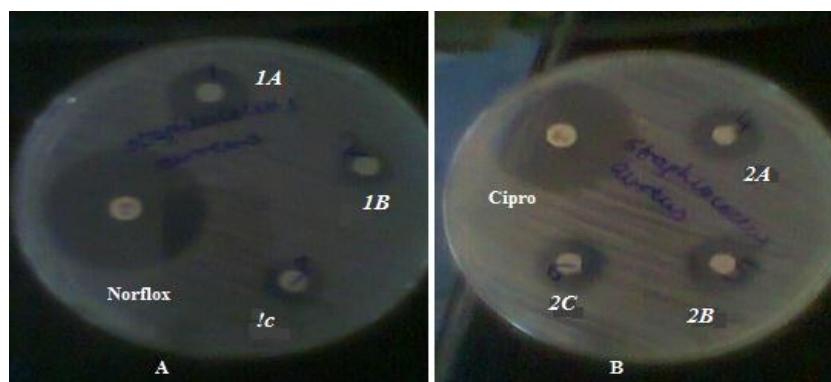
All synthesized derivatives of Fluoroquinolone (ciprofloxacin). Final hybrid compounds were screened for their in-vitro antibacterial activity against Gram-negative bacteria *P.aeruginosa* ATCC 27853, gram positive bacteria *E.coli* ATCC 25922 and *S.aureus* ATCC 25923.

### Susceptibility Test Procedure<sup>[50, 51]</sup>:-

1. The plates were prepared with Mueller Hinton Agar for the use in the Bauer-Kirby method for rapidly growing aerobic organisms. For fastidious organisms such as Streptococcus, the agar is supplemented with 5% sterile, defibrinated blood. The medium in the plates should be sterile and have a depth of about 4 mm.
2. Pure cultures were used as inoculum. Three to four similar colonies were selected and transferred into about 5 ml of suitable broth such as Tryptone Soya broth and was incubated at 35°C for 2-8 hours till light to moderate turbidity developed. If the turbidity in the broth was sufficient, further incubation was not necessary.
3. A sterile non-toxic cotton swab on a wooden applicator was dipped into the standardized inoculum (turbidity so adjusted, as to obtain confluent growth on the Petri plate) and the soaked swab was rotated firmly against the upper inside wall of the tube to express excess fluid. The entire agar surface was streaked of the plate with the swab three times, turning the plate at 60° angles between each streaking. The inoculum was allowed to dry for 5-15 minutes with the lid in place.
4. The disc was applied using aseptic technique. Sample discs\* were deposited with centers at least 24 mm apart.
5. The inoculated culture medium prepared as above was immediately incubated at 37°C and was examined after 14-19 hours or later if necessary.
6. The zones showing complete inhibition were measured and the diameters of the zones to nearest millimeter were recorded. Results are given in Table No. 35.


- \*Note- Sample disc prepared using presterilized disc (6mm diameter) of whatman filter paper no. 1 impregnated with 50µl of 0.2µg/µl sample solution in DMSO by using micropipette.
- The Standard ciprofloxacin (5µg/disc) and Norfloxacin (10µg/disc) disc were obtained as marketed by M/S. Hi Media Pvt. Ltd., Mumbai (India).

**Table No. 7: Zone Size Interpretative Chart:- (Based On Results Obtained Using Mueller Hinton Agar)**



| S/N | Antimicrobial agent | Disc content (mcg) |                | Interpretative criteria |                |
|-----|---------------------|--------------------|----------------|-------------------------|----------------|
|     |                     |                    | Sensitive (mm) | Intermediate (mm)       | Resistant (mm) |
| 1   | Norfloxacin         | 10                 | 17             | 13-16                   | 12             |
| 2   | Ciprofloxacin       | 5                  | 21             | 16-20                   | 15             |

**Table No. 8: Quality Control Limits For Antibacterials<sup>50, 51</sup>:-**

| S/N | Antimicrobial agent | Disc content (mcg) | Diameter of zone of Inhibition (mm) |                              |                                  |
|-----|---------------------|--------------------|-------------------------------------|------------------------------|----------------------------------|
|     |                     |                    | Quality control limits              |                              |                                  |
|     |                     |                    | <i>E.coli</i><br>ATCC25922          | <i>S.aureus</i><br>ATCC25923 | <i>P.aeruginosa</i><br>ATCC27853 |
| 1   | Norfloxacin         | 10                 | 28-35                               | 17-28                        | 22-29                            |
| 2   | Ciprofloxacin       | 5                  | 30-40                               | 22-30                        | 25-33                            |



**Fig:15 Zone Of Inhibition For E.Coli**

Fig:16 Zone of Inhibition For *S. Aureus*Fig:17 Zone Of Inhibition For *P. Aeruginosa*

## RESULTS AND DISCUSSION

### 1. Physical Data of Hybrid Compound

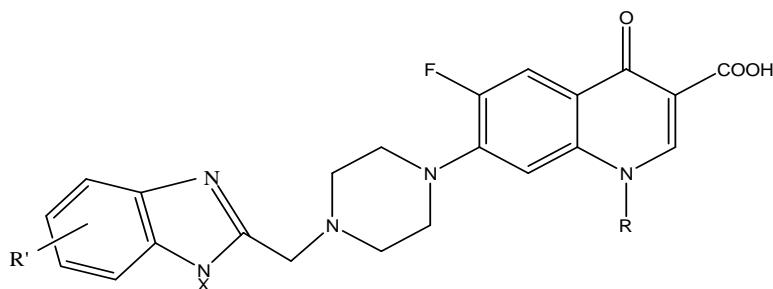



Table: 9 Physical Data of Hybrid Compound

| Comp Code | R'- | X-                            | Mol Formula                                                       | Mol Weight | M.P. (°C) | % Yield |
|-----------|-----|-------------------------------|-------------------------------------------------------------------|------------|-----------|---------|
| 1A        | H   | C <sub>2</sub> H <sub>5</sub> | C <sub>26</sub> H <sub>28</sub> FN <sub>5</sub> O <sub>3</sub>    | 476        | 190-195   | 80-85   |
| 1B        | H   | C <sub>2</sub> H <sub>5</sub> | C <sub>27</sub> H <sub>25</sub> FN <sub>5</sub> O <sub>3</sub>    | 488        | 180-183   | 80-85   |
| 1C        | H   | C <sub>2</sub> H <sub>5</sub> | C <sub>28</sub> H <sub>27</sub> FN <sub>5</sub> O <sub>4</sub>    | 518        | 200-203   | 80-85   |
| 2A        | Cl  | CH <sub>3</sub>               | C <sub>25</sub> H <sub>26</sub> FN <sub>5</sub> O <sub>3</sub> Cl | 508.5      | 220-223   | 80-85   |
| 2B        | Cl  | CH <sub>3</sub>               | C <sub>26</sub> H <sub>23</sub> FN <sub>5</sub> O <sub>3</sub> Cl | 517.5      | 200-203   | 80-85   |
| 2C        | Cl  | CH <sub>3</sub>               | C <sub>27</sub> H <sub>25</sub> FN <sub>5</sub> O <sub>4</sub> Cl | 536.5      | 235-242   | 80-85   |

All synthesized hybrid compounds were purified by column chromatography by using 10:90methanol: dichloromethane as a mobile phase.

## 2. Spectral Analysis

### IR Spectroscopy—

Some synthesized compounds (both final and intermediate) were subjected to IR spectroscopy to confirm their molecular structures by assigning characteristic functional group frequency .The observed value of frequency were compared with standard values required for interpret functional groups.

### NMR-

Hybrid compound1AwAS analysed by NMR spectroscopy. Some intermediates were also analysed by NMR.Delta values (in ppm) and total number of proton and carbon in NMR fulfils the criteria of proposed structure.

### Mass Spectrometry-

Selected hybrid compound was analysed by mass spectrometry and found to be uncorrected.

## 3. Biological Evaluation

### A. Antibacterial Screening

**Table No.10: Report of Antibacterial Susceptibility Test.**

| S/<br>N | Compound codes | Disc<br>content<br>(mcg) | Diameter of zone of Inhibition (mm) |                      |                 |
|---------|----------------|--------------------------|-------------------------------------|----------------------|-----------------|
|         |                |                          | Quality control limits              |                      |                 |
|         |                |                          | <i>E.coli</i>                       | <i>P. aeruginosa</i> | <i>S.aureus</i> |
|         |                |                          | ATCC<br>25922                       | ATCC<br>27853        | ATCC<br>25923   |
| 1       | 1A             | 10                       | 18                                  | No zone*             | 17              |
| 2       | 1B             | 10                       | 06                                  | No zone*             | 13              |
| 3       | 1C             | 10                       | 17                                  | No zone*             | 12              |
| 4       | 2A             | 10                       | 23                                  | 18                   | 14              |
| 5       | 2B             | 10                       | 26                                  | 20                   | 15              |
| 6       | 2C             | 10                       | 28                                  | 18                   | 14              |
| 7       | CIPROFLOXACIN  | 5                        | 38                                  | 31                   | 30              |
| 8       | NORFLOXACIN    | 10                       | 36                                  | 31                   | 31              |

\*No zone means zone of inhibition is 0 mm in diameter.

Results are obtained using Mueller Hinton agar

Antimicrobial screening shows that broad spectrum activity of compound 2A, 2B, and 2C. While compound 1A, 1B, 1C are less activity than reference drug, shows no inhibition zone for *P. aeruginosa*.

## CONCLUSION

A series of fluoroquinolone-benzimidazole hybrid was prepared and characterized by NMR, MS, and IR. The synthesized substituted fluoroquinolones were found pure; satisfactory in yield with reproducible results. Thus a series of hybrid molecules has been discovered. Hybrids were subjected to biological screening. Antibacterial activity (MIC) was done and compounds were found to be less and nearly similar active to ciprofloxacin/ norfloxacin. All synthesized derivatives of Fluoroquinolone (ciprofloxacin). Final hybrid compounds were screened for their in-vitro antibacterial activity against Gram-negative bacteria *P.aeruginosa* ATCC 27853, gram positive bacteria *E.coli* ATCC 25922 and *S.aureus* ATCC 25923 and found that compounds less active except compound 2A, 2B, 2C are nearly similar to ciprofloxacin/ norfloxacin.

## ACKNOWLEDGEMENTS

The authors are very much thankful to College of pharmacy, Nashik, India for providing all the facilities to perform the research work.

## REFERENCES

1. Bhanot,S,K.;Singh,M.;Chatterjee,N,R.*Curr.Pharma.Design*,2001;7:313.
2. Commercial prospective: Fluoroquinolones – Established products drive the market growth, Jan – 2004, (www.marketresearch. Com )
3. John,M,B.; Jr.Beale, J,M.*Wilson And Grisvol Medicinal chemistry* (Ed.), 11<sup>th</sup>Ed .Lippincott William Publisher, Baltimore(USA), 2004; 247.
4. Micheal, H, C.; Mary, S.*Antimicro.AagentsChemother*.2003, 47, 2442.
5. Eric, M, S.; *A J.Pharm. Edu*, 2003, 66,165.
6. Chaitanya, G, D.; Hardik, M, J.*Indian. J. Chem*, 2002; 41: 650.
7. Lesher,G,Y.;Foelich,E,J.;Garnett,M. D.;Baily,J.H.;Brundage,P,R.*J.Med.Chem*.1962;5;25 9.
8. Nicolle, L.E., Academic Press, New York, 1998; 183.
9. Barton, N.; Crowther,A,E.; Hesworth,W.;*UK Patent* 830832.1966.
10. Chu,D,T,W.; Fernandes, P,B. *Advances in Drug Research*, B. Testa. Ed., Academic Press, London, 1991; 21: 39.

11. Bryskier,A.;Chantot,J.F.*Drugs*.1995,49,16.
12. Naber, K.G.; Adam, D.*Int.J. Antimicrob. Agents*, 1998; 10: 255.
13. Evan M and Reeves, D.S., Churchill Livingstone, New York, 1997; 419.
14. Masateru,O.;Hiroshi,K.*J. Med. Chem*,1991;34: 131.
15. Chu,D,T,W.;Fernandes,P,B.*Antimicro. Agents Chemother*, 1989; 33: 131.
16. Fluoroquinolones - Drug Class Review ,Oregon State University,2002,1.( through internet - [www.google.com](http://www.google.com))
17. Joseph,B.; DOuglas, F.*Clinical Therapeutics*, 2000:22:798.
18. Catherin,M,O.;Gray,M,G.*American Family Physician*.2002; 1.
19. Wise,R.;Honeybourne,D.*Eur. Respir. J.* 1999; 14:221.
20. Perry, C,M.; Douglas,O.; Miriam,H.; Susan,V,O. *Drugs*, 2002;62:169.
21. Andersson,M.;MacGowan,A.*Antimicrob. Agents Chemother*.2003;51:1.
22. Sharma,P.;Jain,S.;Jain,A.*Acta Pol. Pharm. Drug*.2009;66:587.