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ABSTRACT 

Parkinson‟s disease is a common, multifactorial neurological disorder 

caused by the degeneration of dopaminergic neurons in SNpc leads to 

dopamine deficiency. It is the second common neurodegenerative 

disease. Risk factors such as genetic and environmental provide an 

impact on the diseased condition. It was primarily characterized by the 

overexpression of the clumps of proteinaceous inclusions called Lewy 

bodies composed of alpha-synuclein & having a marked motor and 

non-motor features. Oxidative stress exerts a negative effect in 

Parkinson‟s disease, is a significant contributory factor in the 

progression of disease condition through various mechanisms 

including reactive oxygen species generation that promotes the 

oxidation of macromolecules such as lipids, proteins & nucleic acid, 

mitochondrial dysfunction, neuroinflammation including microgliosis, astrogliosis, 

lymphocytic infiltration, excitotoxicity. To provide better clinical intervention and treatment, 

it is essential to find reliable, robust, specific & sensitive biomarkers for Parkinson‟s disease. 

It can clearly distinguish the disease from other conditions, monitor its progression, or 

indicate a positive response to therapeutic intervention. This review covers the mechanisms 

involved in oxidative stress in the genesis of disease and current potential biomarkers, 

highlighting their role in Parkinson‟s disease. 
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INTRODUCTION 

Parkinson‟s disease is a chronic, progressive neurodegenerative disorder characterized by 

dopaminergic neuron death that develops in Substantia nigra pars compacta (SNpc) and 

accumulation of abundant intracellular proteinaceous aggregates called Lewy bodies 

primarily comprised of fibrillar alpha-synuclein and ubiquitinated protein in some remaining 

nigral neurons.
[1] 

It is the 2
nd

 top-most prevalent primary neurodegenerative disorder of 

CNS
[2] 

& was categorized by tremor, gait disorder, bradykinesia, stiffness, postural 

instability, weak and clumsy limb.
[3] 

Rather than motor symptoms, several non-motor 

symptoms that accompany Parkinson‟s disease, are sensory, psychiatric symptoms namely 

anxiety, depression, sleep disorder, and apathy and cognitive abnormalities include learning, 

memory, perception, problem-solving.
[4] 

Neuroinflammation has also been assumed to result 

in oxidative stress, overproduction of cytokines, excessive activation of microglia and other 

inflammatory mediators, as well as ROS, which accelerate disease progression.
[5] 

Apart from 

dopamine, well-known other neurotransmitters such as Glutamate, GABA, Acetylcholine 

also having a role in Parkinson‟s disease symptoms.
[6] 

The most pervasive neurodegenerative 

triggers of parkinsonism are alpha-synucleinopathies (Lewy Body Disease), Multiple System 

Atrophy (MSA), Progressive Supranuclear Palsy (PSP), and Corticobasal Degeneration 

(CBD). Such ailments are described mainly based on the accumulation of the predominant 

proteins within degenerated neurons and glial cells. Therefore reliable biomarkers are 

required for early and accurate disease diagnosis to predict disease incidence and progression, 

as they can be used as objective and characteristic evaluation indicators of normal biological 

processes and pathogenic processes of the disease. The appropriate biomarkers- alone or in 

combination, are used to diagnose and record the progression of Parkinson‟s disease.
[7] 

The 

featured gold standard for interpretation of Parkinson‟s disease is the emergence of SNpc 

degeneration and the “Lewy pathology”. Taken into account, it usually comprises abnormal 

alpha-synuclein aggregates called Lewy body & Lewy neurites (altogether Lewy 

Pathology).
[8] 

The Predominant location of Lewy bodies is chiefly in the brain stem and 

diencephalon (usually SNpc, dorsal vagal nucleus).
[9]

 Patients associated with dementia 

shows the involvement of Lewy bodies and also the aggregation of alpha-synuclein 

intraneuronal native to the peripheral region such as olfactory and gastrointestinal tract 

central region include medulla, pons, cortex of nervous system which track the motor 

symptoms and non-motor symptoms; assisted by the participation of midbrain and ultimately 

to cortical region of the brain.
[10-11] 

Impairment of subnuclei presents in SNpc along with 

intense wiping out neuromelanin-laden projections often taken into consideration as the most 
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important trademark of Parkinson‟sdisease.
[12] 

The disease is slightly more common in men 

than in women and the prevalence of this disease is increasing with age and it affects 1% of 

the total population above 60 years.
[13] 

Worldwide estimations of Parkinson‟s disease by 

WHO showed as 35.6 million.
[14]

 This number would be expected to double between 2005 & 

2030, more than triple by 2050.
[15-16]  

In high-income nations, the estimated age-standardized 

annual incidence rate is 14 per 100000 people aged 65 years or older.
[17]

 The average 

prevalence of Parkinson‟s disease in developed countries is 0.3% in the general population, 

1% in people older than 60 years, and 3% in people older than 80 years; the occurrence rate 

of disease is estimated to range from 8 to 18 per 100000 person-years.
[18] 

The disease 

frequency ranges vary from country to country and the rate of occurrence is considerably 

greater in Europe and North America than in West Africa and Asia.
[19]

 Oxidative stress 

having an impact on the modulation of activity in the disease progression. In this review, the 

association between Parkinson‟s disease & oxidative stress will be conferred with possible 

mechanisms underlying oxidative stress & highlighting the role of biomarkers. 

 

Pathogenesis 

A key characteristic primary hallmark feature of Parkinson‟s disease is the neurodegeneration 

in SNpc and nigrostriatal (dopaminergic) tract, resulting in a decrease in striatum dopamine, 

needed for muscle tone and motor coordination. So an inconsistency between the cholinergic 

(excitatory) and dopaminergic (inhibitory) striatal mechanism occurs, the way that results in 

motor dysfunction. Triggering of free radicals in the presence of Fe
2+

 ions, found in basal 

ganglia mainly by the oxidation of aldehyde dehydrogenase and MAO-B. Glutathione and 

other defensive mechanism annihilated them and it potentially contributes to neuronal death, 

often causing lipid membrane and DNA damage. By inducing Ca
2+

 overload via the NMDA 

receptor, excess stimulation of excitatory transmitter glutamate may trigger „excitatory‟ 

neuronal death. Through the administration of neuroleptics, metoclopramide (dopamine 

blockers), trigger drug-induced temporary or reversible symptoms of parkinsonism.
[20]

 

 

Neuropathology 

The key pathological characteristic of Parkinson‟s disease is the loss of dopaminergic 

neurons in the substantia nigra.
[21]  

Usually, the most grievously infected region of substantia 

nigra pars compacta is the ventrolateral tier, which comprising neurons that project to the 

dorsal putamen of the Striatum.
[22] 

Neuronal disruption occurs in several other regions of 

brain-like, locus coeruleus, Meynert nucleus basalis, pedunculopontine nucleus, raphe 
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nucleus, vagus dorsal motor nucleus, amygdala, and hypothalamus.
[23] 

Many other non-

dopaminergic neurotransmitter systems, like cholinergic, adenosinergic, glutamatergic, 

GABAergic, serotonergic, nor-adrenergic, and histaminergic, are also affected.
[24]

 The 

pathological hallmark of Parkinson‟s is the Lewy bodies (Lewy pathology), aggregation of 

alpha-synuclein protein. Mainly in the neuronal phase, large alpha-synuclein aggregates from 

round laminated eosinophilic cytoplasmic inclusions in the neuronal body & fibrils made of 

insoluble alpha-syn (Lewy neurite) polymers are deposited. This accumulation impairs the 

functioning of the mitochondria, lysosome, endoplasmic reticulum & interacts with 

microtubular transport. In advanced Parkinson‟s disease, the depletion of pigmented neurons 

leads to gross depigmentation of SN,
[25] 

directly correlated with the death of dopaminergic-

neuromelanin containing neurons present in SNpc & nor-adrenergic neurons in locus 

coeruleus.
[26] 

In addition to alpha-synuclein, the molecular components of Lewy bodies 

including proteins like Ubiquitin, Tau, Parkin, Heat shock proteins (HSPs), oxidized or 

nitrated proteins, cytoskeletal proteins (neurofilaments, microtubule-associated proteins, & 

tubulin), proteasomal & lysosomal elements.
[27]

 The main staging system of disease by Braak 

& co-workers has been proposed to introduce the 6 stages of pathology in Parkinson‟s disease 

(Table 1) beginning from the peripheral nervous system progressively affecting the CNS 

rostrocaudal all-round the brain, in a chronological predictable series.
[28] 

 

Table 1: Braak six staging concept for Parkinson’s disease. 

Stages Lewy body assessment 

Stage 

1, 2 

 The lesions were primarily observed mainly in the dorsal motor nucleus, 

reticular formation, anterior olfactory nucleus. 

 Patients were considered as Asymptomatic or Pre-symptomatic, although early 

non-motor features may be present such as autonomic (example: constipation), 

olfactory, and sleep-related dysfunction.
[29]

 

Stage 3 
 The SNpc becomes active as the disease progresses with Lewy body pathology. 

 Neuronal loss has been observed in melanized neurons. 

Stage 4 
 Simultaneous entering to temporal limbic cortex 

 Clinical motor features.
[30]

 

Stage 

5,6 
 Participation of whole neocortex, high order area such as 

Cortical regions (insular cortex, primary cortical areas).
[31] 

 

Following the revision of the Braak hypothesis, it indicates the association of pathology with 

alpha-synuclein is initiated at nasal and intestinal mucosal sites, particularly in olfactory bulb 

& enteric cell plexuses called the “Dual-hit hypothesis”. It implies that, via the olfactory 

pathway, an unknown, possibly infectious, pathogen reaches the brain. Notably, PD patients 

also have olfactory prodromal deficits. Or the pathogen is transmitted to the intestine by 
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swallowing nasal secretions and it enters the vagus nerve and the CNS. The identification of 

Lewy Bodies in the intestinal systems, vagus nerve, derives pathological support for this 

hypothesis.
[32] 

 

Potential Interaction of Encoded Proteins & Their Mutation In Parkinson’s Disease 

Early potential targets that having a major role in the progression of Parkinson‟s disease. The 

aim of understanding the therapeutic targets to comprehend the major pathological changes 

noted is to effectively alleviate or bring down the progression of the disease.
[33] 

The disease is 

triggered through the coordinated effects of hereditary and environmental interaction.
[34]

 

Most cases are probably to be focused due to on the complex interaction between genes and 

the environment. The interplay of environment and genes is a problem even in cases with 

known triggers is likely.
[35] 

Majority of cases of this pathological condition cannot be 

explained by genetic mutation itself. However, the particular gene involved in the genetic 

pathogenesis of this disorder has been put emphasized by a mutation in a specific gene in 

hereditary Parkinson‟s disease.
[36]

 6 gene loci found in association with this diseased 

condition.
[37] 

Alpha-synuclein, PARKIN, PINK-1, DJ-1, LRRK2, ATP13A2, and UCH-L1 

gene mutation, which have been shown a deep involvement.
[38-39] 

 

Alpha-synuclein 

The protein alpha-synuclein is abundantly found in neurons and glia within the CNS and is 

concentrated in the neuronal structure.
[40]

 This is a small, soluble, acidic protein of 140 amino 

acid residues, and also it is a monomeric protein, primarily in cytosolic location, and a 

fraction has been found in mitochondria.
[41]

 Belonging to a family of structurally homologous 

proteins, synuclein is mainly categorized namely as alpha-synuclein, beta-synuclein, gamma-

synuclein.
[42-44]

 The protein aggregates are the neuropathological aspect of the diseased 

condition which is mainly a central component of the Lewy bodies and Lewy neurites.
[45]

 

Various cellular function which may obstruct and these aggregates are present as in case of 

dementia with Lewy bodies (DLB) & multiple system atrophy (MSA).
[46]

 In general, the 

immunohistochemistry of α-synuclein is typically a global standard in neuropathological 

assessment.
[47] 

The three distinct key cognizance emerged with the repeated research 

findings: (1)α-synuclein pathology is prevalent in the neuritic growth process, (2) it is 

widespread in varying domains of the brain, (3) it is also noticeable in other 

synucleinopathies, including in cases of Alzheimer‟s disease (thus termed LB version of AD), 

NBIA type 1 (Neurodegeneration with brain iron accumulation, PAF (pure autonomic failure) 



Manjunatha et al.                                                               World Journal of Pharmaceutical Research 

www.wjpr.net      │     Vol 10, Issue 11, 2021.      │     ISO 9001:2015 Certified Journal        │ 1007 

and in essential tremor.
[48]

 The pathological distribution at both cellular and regional levels 

varies in each diseased state.
[49] 

It possesses a capacity to adhere to negatively charged cell 

membrane phospholipid, which occurs through the highly conserved region, N-amphipathic 

domain, and β-sheet structures on protracted periods of incubation.
[50-51]

 During a 

pathogenetic process, alpha-synuclein acquires neurotoxic properties so the soluble alpha-

synuclein monomers at first form oligomers, then gradually merge to arrange as tiny 

protofibrils & ultimately big, insoluble alpha-synuclein fibrils (i.e., this aggregates that 

makeup Lewy pathology), due to lack of proper clearance of lysosomal or ubiquitin-

proteasome system.
[52-54]

 The other underlying cause of alpha-synuclein accumulation and 

aggregation is the occurrence of mutations that raise the risk of alpha-synuclein misfolding 

and oligomerization or deficiency in the molecular pathways that are concerned with alpha-

synuclein degradation or misfolding.
[55-56] 

There have been several independent point 

mutations identified.
[57]

 Alpha-synuclein mutations are detrimental to dopaminergic neurons 

because of the alteration of a set of intracellular signal programs.
[58]

 Most important 6 

dominant inherited point mutations (A30P, E46K, H50Q, G51D, A53E & A53T) in the 

alpha-synuclein gene have been identified as rare causes for familial Parkinson‟s disease.
[59-

60] 
In single point mutation, a conversion of G to A at position 209, which eventually changed 

the code of the amino acid from Alanine to Threonine at residue 53 (A53T).
[61]

 The first 

dominantly inherited mutation in Parkinson‟s disease to be identified was an A53T alteration 

of the gene encoding α-synuclein & it causes an extreme phenotypic form of PD frequently 

followed by dementia
[62] 

& muscle rigidity and bradykinesia are the major clinical 

characteristics.
[63]

 A53T also causes mitochondrial dysfunction- and cell death pathways 

mediated by endoplasmic reticulum stress.
[64]

 These mutations can form filaments, aggregates 

of substantia nigra, and other brainstem neurons in dopamine neurons and make dopamine 

neurons more vulnerable to oxidative stress.
[65]

 Two other point mutations (A30P, E46K) 

have been identified &they show the segregation with the disease.
[66] 

The chemical process 

oligomerization is accelerated by A30P α-synuclein mutation, while the A53T mutation 

accelerates fibrilization & it accelerates alpha-syn aggregation faster than A30P alpha-syn 

mutation, because of its capacity to induce fibrilization.
[67] 

The second most major cause of 

Parkinson‟s disease is autosomal dominant inherited duplication & triplication of the SNCA 

gene. Duplication of alpha-synuclein locus results in late-onset autosomal dominant types of 

PD, as shown in sporadic PD, while triplication of alpha-synuclein locus leads to a more 

extreme phenotype with earlier age at onset.
[68] 
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Ubiquitin C-terminal hydrolase L1 (UCH-L1) 

It is graded as a deubiquitinating enzyme (DUB). The two groups of DUB are; (1) UBPC & 

(2) UCH, which hydrolyses a small proportion of C-terminal ubiquitin adducts. Multiple 

UCH isoforms are thought to occur in humans, even so, UCHL-3 is present in all tissues, 

whereas UCHL-1 is specifically limited to testis or ovaries.
[69] 

Ubiquitin carboxyl-terminal 

hydrolase L1 (UCH-L1) was the extremely most abundant neuronal-specific ubiquitin 

recycling enzyme. It is known as neuronal-specific protein PGP 9.5, where, remarkably 

comprising up to 2% of the total brain protein material
[70] 

and approximately 5% residues 

exist in synaptic vesicles which have mainly been shown to co-localization with alpha-

synuclein.
[71]

 It is vital for the maintenance of axonal health & stability and its loss leads to 

axonal degeneration & neuronal death.
[72]  

UCHL-1 has three known enzymatic roles: (1) 

hydrolase activity for Lys48-linked ubiquitin chains targeted for proteasomal degradation; (2) 

recent newly recognized ATPase-independent dimerization-dependent ubiquitin ligase 

activity for Lys63 ubiquitin molecule residue; (3) A function in ubiquitin monomer 

homeostasis, where UCHL-1 tends to modulate free ubiquitin monomer breakdown in the 

cell.
[73] 

The Ubiquitin proteasome system was a significant cellular pathway that ubiquitinates 

disrupted proteins & degrade them via 26S proteasome.
[74]

 The irregularities in this pathway 

lead to the failure to remove & destroy misfolded proteins, which results in the accumulation 

of misfolded proteins in the cell contribute to the development of inclusion bodies, and cause 

significant loss of dopaminergic cells.
[75] 

Oxidation of UCHL-1 & following decrease in the 

enzymatic activity impair neuronal function and its survival leads to the pathogenetic 

condition. Owing the solubility is decreased, that lead to a subsequent rise in insoluble 

UCHL-1.
[76-77] 

Mutation in the gene UCHL-1 & its variation in protein activity have been 

found. An isoleucine 93 to methionine amino acid mutation (I93M) has been reported as a 

cause of autosomal dominant Parkinson‟s disease.
[78-79] 

 

Parkin 

Parkin, an enzyme protein of 465 amino acids of approximately 52,000 M molecular mass 

encoded by the PARK2 gene, comprises 12 exons spanning 1.5 Mb.
[80-81]

 It is a protein, 

consist of a ubiquitin homology domain at its N-terminal, by which it interacts with its 

protein targets
[82] 

& comprising 2 RING fingers at its c-terminus and has been described as an 

E3 ubiquitin-protein ligase, needed for ubiquitination of proteins, can be activated by 

autophosphorylation and is necessary for the ubiquitin-proteasome deterioration of target 

substrates.
[83] 

It is also an element of the ubiquitin system, is a piece of chief machinery for 
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the degradation of adenosine triphosphate-dependent proteins.
[84] 

This protein appears to 

unfold when overexpressed in cells. A rise in the amount of unfolded proteins in the 

endoplasmic reticulum (ER) causes what is called endoplasmic reticulum stress,
[85]

 resulting 

outcomes of which is programmed cell death.
[86]

 Interestingly,  a broad range of mutations 

within the parkin gene, such as exon deletions, duplications, & point mutations, eventually 

cause autosomal recessive early-onset Parkinsonism.
[87-88]

 Mutations like R42P, R46P, 

K211N, C212Y, C253Y, C289G, and C441R, causing the defect to its mobilization to 

depolarized mitochondria & hinder mitophagy, contributes to the progression of a diseased 

state.
[89] 

 

DJ-1 

It is well known as PARK 7, in which the mutation was attributed to the early incidence of 

recessive Parkinson‟s disorder causes abolishing antioxidant activity, display increased 

vulnerability to oxidative stress, reducing protein stability. A homozygous exon 1 to 5 

deletion was the first mutation found in this family, that causes the entire protein deletion.
[90]

 

The mutation involved in this gene is extremely rare occurring about 1-2% early stage of 

cases. It suggested being co-localized with mitochondria & up-regulation caused under high-

stress conditions. The cellular processes related to DJ-1 include attenuating oxidation, RNA 

binding, cell transformation, & androgen receptor signaling.
[91]

 The analysis of the diseased 

brain shown the oxidative damage of DJ-1 & increase the total protein content. The mutation 

which was found in a homozygous or heterozygous state ultimately causes the loss of the 

function of a protein, involving intracellular oxidation-reduction.
[92]

 Mutant DJ-1(L166P and 

M26I) enhance  the susceptibility of SHSY5Y cells to oxidative stress by suppressing H2O2 

neuroprotection and induction of thioredoxin-1 by inhibition of factor 2 signal pathway 

associated with nuclear factor erythroid2.
[93]

 The deficiency of DJ-1 in neurons results in the 

decrease in glutamine reflux, serine biosynthesis strengthened cellular antioxidant response 

cause the dopaminergic neuronal degeneration.
[94] 

 

Possible Mechanisms Underlying The Oxidative Stress In Parkinson’s Disease 

Oxidative stress has been a proposed key part of Parkinson‟s disease. It describes an 

imbalance between the levels of reactive oxygen species (ROS) such as free radicals and the 

biological system's ability to detoxify the reactive intermediates through antioxidants creating 

a dangerous state that contributes to cellular death. H2O2, hydroxyl radical, nitric oxide (NO), 

and superoxide radicals are free radicals that are mainly harmful to cells, while SOD, 
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catalase, glutathione, and uric acid are important antioxidants in the human body.
[95]

 SOD 

catalyzes the transformation of radicals from superoxide to hydrogen peroxide, by catalase 

and glutathione peroxidase the hydrogen peroxide converts into water and oxygen. 

Glutathione peroxidase, which transforms nitrate into nitrite. During the rate-limiting stage of 

purine catabolism, uric acid is transformed by xanthine oxidase. All components of the cell, 

including DNA, lipids, and proteins, are destroyed by decreased activity of the antioxidant 

protection mechanism to defend against free-radical generation, eventually leading to cell 

death.
[96] 

The relationship between oxidative stress & dopaminergic neuronal degenerations 

has been further confirmed with toxic substances that can trigger oxidative stress namely 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Rotenone, OHDA.
[97] 

Besides several other 

neurodegenerative disorders are analogous to oxidative stress, which indicates oxidative 

stress was the major contributing mechanism in neuronal degenaration.
[98] 

 

ROS In Neurotoxicity 

It is a kind of free radical, unstable molecule containing oxygen and which freely interacts 

with other molecules present in the cell. The generation of reactive oxygen species inside the 

cells can induce disruption to DNA, RNA, and proteins and cause cell death.
[99] 

Through 

several pathways, ROS can be generated through inter-relationship through redox-active 

metals & oxygen species, like through Fenton and Haber-Weiss reactions or indirect cycles 

which involve stimulation of enzymes such as nitric oxide synthase or NADPH oxidase.
[100]

 

The major free radicals dominant in ROS such as superoxide anion radical (O2-), hydroxyl 

radical (
•
OH), and hydrogen peroxide(H2O2).

[101]
 Superoxide anion primarily generated by 

the electron transport chain mitochondrial complex I and III, is immensely active & can pass 

effortlessly through the inner mitochondrial membrane, there it will reduce to hydrogen 

peroxide. It can also be generated by peroxisomes in addition to mitochondria.
[102]

 As 

catalase present in the peroxisome, H2O2 is reduced into the water for preventing its 

unnecessary aggregation. Once peroxisomes are injured and the enzymes are getting down-

regulated, H2O2 is released free into the cytosol, provide a way toward oxidative stress.
[103]

 

Around 20 percent of the body's oxygen supply is utilized by the brain, &a large fraction of 

that oxygen is transformed to ROS.
[104]  

This can be produced from many sources in the brain, 

together in neurons and glial cells by electron transport chain (ETC), a key donor at the 

mitochondrial level.
[105-106]

 Significant experimental evidence suggests that ROS, which 

results from abnormal dopamine metabolism, reduction in glutathione level, and elevated 

levels of iron & calcium depositions in SNpc, is a key contributor to dopaminergic neuronal 
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loss in the diseased brain.
[107] 

In addition, the brain contains a large amount of  PUFA, under 

oxidative stress, eventually leads to lipid peroxidation & will give rise to the production of 

toxic substances.
[108]

 

 

Mitochondrial Dysfunction 

Many authentications suggested that mitochondrial dysfunction act as a central factor in the 

pathogenesis of Parkinson‟s disease.
[109]

 Since mitochondria play multiple roles as the source 

and target of ROS. It is a complex organelle with several functions. In addition to their role in 

energy generation, they are actively involved in calcium homeostasis, stress response, and 

cell death pathways. So that the dysfunction of mitochondria thus contributes to cellular 

damage and is associated with neurodegeneration.
[110]

 The fundamental source for ROS is the 

electron transport chain because a small percentage of the superoxide anion is formed during 

the depletion of O2 to H2O.
[111-112]

 The gradient of protons generated by the process of 

electron transport transversely the inner mitochondrial membrane that undertakes ATP 

biosynthesis via ATP synthase.
[113] 

some dehydrogenase of Tricarboxylic acid (TCA) & 

complexes I, II, III also can produce superoxide anion.
[114-115] 

The first stage in the 

mitochondrial electron transport chain is catalyzed by complex I (NADH: ubiquinone 

oxidoreductase). It draws power from NADH oxidation, transfers, and converts ubiquinol to 

ubiquinone. Ubiquinol is a membrane-soluble carrier that discharges a couple of Complex III 

electrons.
[116-117] 

Complex II (succinate-coenzyme Q reductase) creates a connection among 

the tricarboxylic acid cycle & electron transport chain resulting in odd electrons being 

released to Complex III via ubiquinol.
[118] 

By minimizing cytochrome c through 

ubisemiquinone oxidation & by the passage of protons via mitochondrial matrix into the 

intermembrane space, Complex III (ubiquinone-cytochrome c oxidase) hand-out greatly to 

proton gradient.
[119]  

Whenever a decline in the electron transport chain, molecular oxygen 

will absorb electrons via Complex III take place in the formation of a superoxide anion.
[120]

 

Complex I respiratory chain deficiencies account for the majority of the generation of 

unfavorable neural apoptosis and are considered one of the primary causes of ROS, which 

will in turn the inhibit  complex1. It is well observed in platelets, skeletal muscles, 

fibroblasts, lymphocytes, etc.
[121-122] 

The major complex 1 inhibitors that have a preferential 

role include MPTP, rotenone.
[123]

 The mechanism underlying the MPTP is, it crosses the 

BBB & is taken up by the astrocytes, and is metabolized to 1-methyl-4-phenylpyridinium by 

MAO-B oxidase further let out to extracellular space. 1-methyl-4-phenylpyridinium (MPP+) 

is the amine substrate for dopamine transporter & it is selectively taken into dopaminergic 
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neurons, so the  Complex I of mitochondrial electron transport chain will get disrupted, 

results in a decline in ATP production and rise in the generation of ROS.
[124-125] 

Rotenone is 

the other complex 1 inhibitor, was it active in the oxidative damage to proteins and Lewy 

body-like inclusions.
[126] 

Other evidence of dysfunction of mitochondria-associated with 

oxidative stress and damage to dopaminergic cells derives from the observation that mutation 

in genes encoded in proteins such as alpha-syn, parkin, DJ-1, or PINK is associated with 

hereditary forms of the disease, provides a physiological basis for the pathology of 

Parkinson‟s disease.
[127] 

These observations conveyed that the mutation in the protein 

encoded by genes affect the mitochondrial function and an increase in oxidative stress 

provide a deleterious condition in the neurodegeneration.
[128-129] 

 

Neuroinflammation 

Neuroinflammatory mechanisms are also likely the essential contributor to the cascade of 

neuronal degeneration events.
[130-131]

 These mechanisms largely comprised of Microglial 

activation, astrogliosis, and lymphocytic infiltration.
[132] 

 

Microglial Activation 

The concept of neuroinflammation primarily begins with a concept of microglial 

activation.
[133] 

Microglia are a specialized population of macrophages & components of the 

innate immunity system found in CNS. They remove damaged neurons & infections are 

important for maintaining the health of the CNS, which is activated upon brain injury and 

immune challenge.
[134]

 An major inception of superoxide & nitric oxide is activated 

microglia, which in turn leads to oxidative & nitrative stress throughout the 

microenvironment of the brain. By generating other potentially toxic factors, such as 

glutamate and pro-inflammatory cytokines like TNF-alpha, IL-1β, IL-6, and IFN-γ & an 

accompanying relation with alpha-synuclein results of pro-inflammatory mediators in CSF 

and basal ganglia induce activation of microglia.
[135-136]  

Not only alpha-synuclein but also 

LRRK2, DJ-1, parkin are also involved, which provide a way for the microglial activation 

and lead to neurodegeneration.
[137]

 Microglial activation is described as a double-edged 

sword, such as by eliminating endogenous or exogenous compounds and they act as 

neuroprotective cells and having a high level of glutathione and glutathione peroxidase, 

perform to shield them against harmful hydrogen peroxide level, on the other hand, the death 

of dopaminergic neuron release oxidized proteins, lipids, and DNA that are identified by 

microglia as damaged molecules, triggering their activation. In turn, microglial activation 



Manjunatha et al.                                                               World Journal of Pharmaceutical Research 

www.wjpr.net      │     Vol 10, Issue 11, 2021.      │     ISO 9001:2015 Certified Journal        │ 1013 

leads to an over-production of cytokines, chemokines, ROS, reactive nitrogen species, 

causing the neurotoxic vicious cycle
[138-139] 

(Figure 1).
 
Plasma and serum analysis have also 

been showing the upregulation of proinflammatory cytokines and also serum level of  MIF( 

macrophage inhibitory factor) is increased.
[140] 

The receptors for these cytokines are 

expressed by dopaminergic neurons, implying that they are responsive to these cytokines. For 

example; TNF alpha receptor-1 is expressed in dopaminergic neurons and increases the 

expression of this receptor. While cytokines can actively exert toxic effects by binding to 

their receptors and activating second messenger pathways, they can also indirectly generate 

cytotoxic effects.
[141] 

The enzymes such as iNOS (inducible nitric oxide synthase) or COX 2, 

that can also produce toxic reactive species.
[142] 

 

 

Figure 1: Neurotoxic microglial activation. 

 

Astrogliosis 

Besides astrogliosis is the other key aspect of neuroinflammation.
[143]

 Astrocytes are glial 

cells & the most common abundant type of cell in the human brain, that are vital for 

maintaining neuronal health and provide structural and metabolic assistance, regulation of 

synaptic transmission, H2O support, blood flow inside the brain. They provide neurotropic 

molecules namely GDNF which is particularly essential for the betterment and survival of 

dopaminergic neurons.
[144] 

Additionally, when microglia initiates an immune response, 

astrocytes surround that region gradually builds a shield to obstruct the spreading of the toxic 

signal to surrounding healthy tissue.
[145] 

Emerging evidence implicating that brain damages 

such as brain injury, oxidative stress, the function of astrocytes become transiently or 
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permanently disrupted in Parkinson‟s disease.
[146-147] 

Astrocytes release inflammatory 

cytokines that may affect surrounding neurons during the process of reactive astrogliosis, also 

involve both molecular & morphological changes such as induced generation of ROS and 

lipid peroxidation due to the production of NO by iNOS which may diffuse towards neurons, 

excessive formation of gap junction between astrocytes, formation of scars, activation of 

apoptotic mechanisms that cause neuronal dopaminergic death.
[148-149] 

Furthermore, in SN of 

post-mortem PD patients, the upregulation of S100b (Calcium-binding proteins) which act as 

a cytokine, primarily expressed by astrocytes has been shown. This increase in the iNOS 

production may lead to the activation of COX-2 (proinflammatory enzyme) in microglia, as 

well as increased NO and superoxide radical formation (Figure 2). The function of astrocytes 

in disease pathology was not well known also there has been a theory stating that such glial 

cell which may prevent and or worsen nigrostriatal injury due to disturbed balance.
[150]

 

 

 

Figure 2: Role of astrocytes in Parkinson’s disease pathogenesis. 

 

Lymphocytic Infiltration
 

Lymphocyte infiltration is the other major key aspect in neuroinflammation mainly via the 

presence of T lymphocytes, a major endogenous mediator of neuroinflammation. B cells and 

natural killer cells have not been recognized. Helper T- cells (CD4+, Th) and killer T- cells 

(CD8+) stand active & will involve in the immune response. Th1, Th17, Granulocyte 

macrophage-colony stimulating factor-producer T-cells have also been documented to cause 

the acquisition of neurotoxic microglia to be resulting in increased release of 

neuroinflammatory cytokines and chemokines
[151] 

(Figure 3). In PD patients, reduced serum 
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levels of naïve lymphocytes were noticed while the number of activated T cells was 

increased, reflecting that there is a peripheral activation in PD pathology. These data indicate 

that immunogenic factors produced by impaired dopaminergic neurons have the 

potential ability to amplify the pathological process by inducing a detrimental immune 

response.
[152] 

Although activation of microglia and inflammatory changes are commonly seen 

as a cause of neuronal destruction. In Genome-Wide Association Studies (GWAS), the 

identification of Human Leukocyte Antigen (HLA) as a causative reason of Parkinson‟s 

disease, raises the possibility of increase the widespread in a pro-inflammatory situation in 

disease, the predominant principle source of neuronal failure in certain conditions, or as a 

minimum an increasing threat of Parkinson‟s disease as a genotype modifier.
[153] 

The most 

apparent immune-related disease risk variants, positioned in the HLA region (HLA-DRB1 & 

HLA-DRB5).
[154]

 The major histocompatibility complex (MHC) protein encoded by the HLA 

gene, which is actively engaged in the presentation of antigen & its immunity. The above 

complex remains on the surface of antigen-presenting cells such as microglia & facilitate the 

activation of T cell.
[155] 

Such preliminary findings lift the assumptions that depletion of 

dopaminergic neurons caused by  genetic defect or exposure to environmental toxic 

substances will lead the way for mild to moderate peripheral inflammation.
[156] 

 

 

Figure 3: The mechanism involved in T cell-mediated neuroinflammation. 
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Biomarkers of Oxidative Stress In Parkinson’s Disease 

Biomarkers are naturally occurring molecule, gene or characteristic that is objectively 

measured & evaluated as an indicator of normal biologic processes, pathogenic processes or 

pharmacologic response to a therapeutic intervention.
[157]

 It is an indicator of a particular state 

of a disease or an organism, normal and abnormal biologic process & could be a chemical, 

physical, or biological parameter. It is a parameter that can be used to assess disease 

progression or treatment effects, also supported early diagnosis, disease prevention, drug 

target identification, & drug response.
[158] 

The characteristics of an ideal biomarker should be 

sensitive, reproducible, closely correlated with disease pathophysiology, easy to measure, 

inexpensive, non-invasive, and thoroughly validated.
[159-160] 

The findings reflect that it 

provides a way to enhance our understandings of PD pathogenesis.
[161] 

 

8-hydroxydeoxyguanoisne (8-ohdG) 

It is one of the DNA lesions caused by the ROS by oxidation of guanine residues and 

hydroxyl radicals and DNA generates 8-OHdG. The level of this biomarker is selectively 

increased in diseased patients. It is consistently seen high level in CSF compared to that of 

standard control.
[162] 

The concentration of this marker is increased in SN, peripheral blood, 

Urine of Parkinson‟s disease.
[163] 

 

Glutathione 

Glutathione, which is a most thiol-reducing agent acts as an antioxidant that excludes free 

radicals that might destruct dopaminergic neurons & could be lethal to dopaminergic neurons 

thereby acting also as a neuroprotective agent. Overall glutathione contains reduced GSH & 

oxidized forms, preserves redox homeostasis, eliminates metabolic waste, & provides a 

reservoir for amino acids in the brain. Post-mortem assessment of PD patients nigral tissue 

showed GSH deficiency, indicating the decreased ability of cellular waste metabolization 

capacity and protection against ROS, RNS and H2O2.
[164]

 Auto-oxidation of the DA produces 

H2O2 & causes the destruction of GSH. Subsequently, H2O2 is transformed into hydroxyl 

radicals, that are extremely reactive capable of interacting with cellular macromolecules. The 

formation of hydroxy radicals catalyzed by iron plays a significant role in the formation of 

oxidative stress & loss of dopaminergic neuronal loss. The declined level of GSH seen 

substantia nigra and corpus striatum, suggest that accumulation of hydroxyl radical is 

elevated due to GSH down-regulation.
[165] 
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Coenzyme Q10 

Coenzyme Q10 is a constituent of the electron transport chain,
[166] 

mainly present in cytosol 

& plasma. It is a vital cofactor in the mitochondrial respiratory chain, oxidative 

phosphorylation & regarded as a relevant antioxidant. Invitro and in-vivo experiments also 

reported flaws in mitochondrial complex 1 leading to redox equilibrium destruction, leading 

ultimately to neuronal toxicity. Since it is a lipophilic antioxidant, it will scavenge the 

radicals present inside the membrane. A reduced concentration of this coenzyme indicated a 

surge in free radicals, leads to neuronal degeneration. The progression of the disease is 

substantially retarded by coenzyme Q10 and was clinically accessible as a peripheral 

biomarker.
[167] 

 

Lipid peroxidation products 

Oxidative degradation of lipids is termed lipid peroxidation. It is promoted by free radicals on 

membrane lipids, which can abstract hydrogen from the methylene group.
[168] 

Lipid 

peroxidation interferes with membrane organization, protein, and DNA impairment.
[169] 

Several studies have revealed the altered level of lipid peroxidation products such as 

isoprostanes, MDA in neurodegenerative brain tissues. The level of HNE(4-hydroxy-2,3-

nonenal) in CSF is high and the level of MDA,
[170] 

isoprostanes is high in the plasma of 

diseased patients.
[171]

 These studies demonstrated that oxidative stress plays a major role in 

PD through lipid peroxidation.
[172] 

 

Neuromelanin 

Catecholaminergic neurons contain neuromelanin, which is a dark polymer pigment & tends 

to always be widespread in the human brain, but it is missing from those brains of several 

smaller animals. Substantia nigra containing neuromelanin are infected in a diseased state.
[173]

 

The aggregation of neuromelanin-containing neurons tends to be the defensive phenomenon 

that avoids different mechanisms of neurotoxicity. It acts as an iron storage system in the 

substantia nigra dopaminergic neurons where no ferritin has been observed. While in a 

disease state, the damaged neurons release neuromelanin which will lead to the triggering of 

the vicious cycle in neuroinflammation.
[174]

 It also guards neurons against oxidative stress 

facilitated by the free radicals, metals, etc. The rate of neuromelanin can be calculated by 

Magnetic resonance imaging techniques and information on substantia nigra degeneration has 

been shown to provide and is an important biomarker for Parkinson‟s disease.
[175] 
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Plasma Uric acid level 

Uric acid is an essential natural antioxidant that behaves like a free radical scavenger & iron 

chelator that will reduce oxidative stress.
[176]

 It has been found to prevent dopaminergic cell 

death.
[177]

 The reduced level of uric acid was found in the SN of the diseased population 

compared to that of the normal population.
[178] 

Moreover, this having a strong binding 

capacity to iron, leads to oxidative damage by the generation of reactive oxygen species.
[179]

 

Urate may be a significant determinant in disease susceptibility& it was found to be 

decreased in the serum, CSF.
[180]

 The concentration of urate in CSF is approximately 7% than 

that of plasma. It is found in plasma as a sodium salt. At physiological concentration, it 

effective as ascorbate to avoid the lipid peroxidation by hydrogen peroxide scavenges 

nitrogen radicals. Furthermore, the administration of the urate causes the decline in oxidative 

stress & mitochondrial dysfunction of human dopaminergic neurons due to iron ions, 

rotenone, etc. In conclusion, it is a risk factor and a prognostic indicator of Parkinson‟s 

disease.
[181] 

 

Serum BDNF 

Brain-Derived Neurotrophic factor belongs to a family of neurotrophins that control the 

survival and functioning of CNF neurons.
[182]

 It is a potent inhibitor of cell death triggered by 

apoptosis & dopaminergic neurodegeneration by neurotoxins, indicating that it would likely 

be used in the development of disease therapies.
[183] 

Concerning neurological disorder, the 

expression of BDNF is decreased, and was found in the nigrostriatal dopamine region.
[184]

 On 

the other side, the glial cell in the SN of the patients expressed an elevated level of BDNF in 

response to the signal generated from failing neurons. In the case of 6-OHDA induction, the 

intra-striatal graft of fibroblast genetically engineered to develop BDNF partially obstruct the 

loss of bodies of the nigrostriatal dopaminergic pathway.
[185]

 BDNF not only having a trophic 

action but also has a potential capacity for the regulation of cognitive processes.
[186]

 The level 

of BDNF is increased by the use of antiparkinson‟s drugs & it represents a possible 

peripheral marker in cognitive functioning.
[187] 

 

Serum IGF-1 

An Insulin-like growth factor is put forward as a marker for the early detection and protection 

from the depletion of dopaminergic neurons.
[188]

 Moreover, the meta-analysis showed that the 

signalling pathway of IGF-1 is dysregulated in substantia nigra tissues.
[189]

 Moreover, serum 

IGF-1 levels were reported to be a threat for Parkinson‟s disease in people related to altered 
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motor function and transcranial sonography of substantia nigra &closely associated with  

Unified Parkinson's Disease Rating Scale (UPDRS-III). It was proof of confirmation that it 

forecast  the progression of motor symptoms and executive performance diminish in disease 

patients.
[190] 

 

p-Tau and p-Tau/aβ42 ratio 

Amyloid-beta 1-42 (Aβ42) has been reported to be lower in the cerebrospinal fluid (CSF), a 

biomarker in PD, can be used for predicting cognitive decline in idiopathic Parkinson‟s 

disease,  though to a lesser extent than that of Alzheimer‟s disease.
[191]

 This decrease may be 

due to the monomers being deposited in the brain that restricts their diffusion to the CSF.
[192]

 

Also CSF total Tau (t-tau) & phosphorylated tau-181 (p-tau), is more complex target than 

that of Aβ,  lower in PD patients compared to the control population. On the other hand, an 

elevated level of tau is reported in patients having dementia.
[193] 

 

CONCLUSION 

Neurodegenerative diseases impose a significant health risk not only on the affected 

individual but also on their families and society. It becoming more common and rapidly 

increasing in the aged population worldwide. Although several mechanisms have been 

hypothesized for the pathogenesis of Parkinson's disease, it remains elusive. The lines of 

evidence reveal that the oxidative stress underlying Parkinson‟s disease was complex & it 

involves multiple mechanisms. Important key contributing factors culpable for oxidative 

stress are ROS neurotoxicity, dysfunction of mitochondria, dysregulation of immunity, 

increase in iron and calcium depositions. What this put forward that, oxidative stress can be 

an initiator &being a component for neurodegeneration. Nevertheless, an intense 

investigation has shown that the disease remains incurable. All of these factors lead to 

excessive production of Ros. When ROS overwhelms the antioxidant defense system, lipid 

peroxidation, protein oxidation, and DNA oxidation take place. The goal in the development 

and validation of disease-specific biomarkers is to facilitate the early diagnosis of disease, 

prediction of progression, and monitoring of therapeutic efficacy. The application of 

objective biomarkers and the evaluation of oxidative stress is an avenue for the diagnosis of 

Parkinson‟s disease. 
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ABBREVIATIONS 

SNpc-substantia nigra pars compacta 

CNS-central nervous system 

ROS-reactive oxygen species 

GABA- gamma-Aminobutyric acid 

MAO-B-monoamine oxidase B 

NMDA- N-methyl-D-aspartate 

HSP-heat shock protein 

PINK-1-PTEN-induced kinase 1 

DLB-dementia with Lewy bodies 

MSA-multiple system atrophy 

SNCA-alpha-synuclein 

DUB- deubiquitinating enzyme 

UCH- ubiquitin C-terminal hydrolases 

SOD-superoxide dismutase 

NO-nitric oxide 

6-OHDA-6-hydroxydopamine  
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ETC-electron transport chain 

PUFA-polyunsaturated fatty acid 

MPTP- 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine 

GDNF- Glial cell line-derived neurotrophic factor 

iNOS-inducible nitric oxide synthase 

COX-2- cyclooxygenase-2 

MHC- major histocompatibility complex 

GSH-glutathione 

CSF-cerebrospinal fluid 

MDA-malondialdehyde 

BDNF- Brain-derived neurotrophic factor 
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