Special Issue -

Neuroscience

MiR-3099 is Overexpressed in **Differentiating 46c Mouse Embryonic Stem Cells upon Neural Induction**

Shahidee Zainal Abidin^{1,2}, Maryam Abbaspourbabaei^{1,2}, Carolindah Makena Nтімі^{1,2}, Wei-Hong Siew^{1,2}, Pike-See Снеан^{1,3}, Rozita Rosli^{1,2}, Norshariza Nordin^{1,2}, King-Hwa Ling^{1,2}

- Submitted: 22 Jun 2014 Accepted: 22 Oct 2014
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia
- Clinical Genetics Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia
- ³ Department of Human Anatomy, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia

Abstract

Background: MicroRNAs (miRNAs) have a crucial role in gene expression regulation and protein synthesis, especially in the central nervous system. In developing mouse embryos a novel miRNA, miR-3099, is highly expressed, particularly in the central nervous system. This study aims to determine the expression of miR-3099 during cellular differentiation of 46C mouse embryonic stem cells after neural induction with N2/B27 medium.

Methods: 46C mouse embryonic stem cells were subjected to neural induction with N2/B27 medium. At 0, 3, 7, 11, 17, and 22 days after neural induction, the cells were screened for various pluripotent, progenitor, and differentiating/differentiated cells markers by immunocytochemistry and reverse-transcriptase polymerase chain reaction (RT-PCR). Stem-loop pulse RT-PCR was performed to determine the expression of miR-3099 at all selected time points after neural induction.

Results: Our findings showed that after induction, mouse embryonic stem cells differentiated into heterogeneous pools of cells containing neurons, astrocytes, and oligodendrocytes. Mouse embryonic stem cells and neural progenitor/precursor cells were also present in culture up to day 22 as indicated by RT-PCR analysis. Elucidation of miR-3099 expression during in vitro neural induction revealed that this miRNA was expressed throughout the differentiation process of 46C mouse embryonic stem cells. miR-3099 was expressed at higher levels on day 11, 17, and 22 as compared to day 0, 3 and 7 after neural induction.

Conclusion: The level of miR-3099 expression was higher in differentiated mouse embryonic stem cells after neural induction. This finding suggested that miR-3099 might play a role in regulating neural stem cell differentiation. However, further characterisation of miR-3099 in a better characterised or optimised differentiated neural stem cell culture would provide increased understanding of the cellular function and molecular targets of miR-3099, especially in neuron development.

Keywords: MicroRNA, miR-3099, neural induction, 46C mouse embryonic stem cells, neuron

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNA of 18-24 nucleotides (nt) that are emerging as key regulators of many posttranscriptional processes (1,2). miRNAs serve as repressors in the translation process by inhibiting the assembly of ribosomal complexes or promoting deadenvlation processes on target mRNAs (1,2). miRNAs have crucial roles in regulating the development of the nervous system (3-6). For example, miR-124, let-7b and miR-

137 play an essential role during differentiation of neurons in mice (7-11). miR-124 is one of the most extensively studied miRNAs that is involved in regulating the function and development of the nervous system. *miR-124* promotes neuronal differentiation by regulating an intricate network of nervous system-specific alternative splicing as well as by participating in adult neurogenesis of the stem cell niche in the subventricular zone of the mouse brain (12,13).

In 2011, miR-3099 was discovered in a deep sequencing analysis of small RNA isolated from the developing E15.5 mouse brain (14). miR-3099 was found to be expressed in mouse embryonic stem (mES) cells, blastocysts and throughout the whole mouse embryo between E9.5 and E11.5, suggesting that this miRNA could have a broad regulatory role. At E13.5, its expression was confined to the cortical neuroepithelium, striatum, medial pallium (hippocampal allocortex), and the subventricular/ventricular zone of the superior and inferior colliculi. The expression of miR-3099 was further restricted to the cerebral cortex cortical plate in E15.5 embryos. In whole brains from E17.5 embryos, miR-3099 expression was observed in the cortical plate, piriform cortex and was expressed at lower levels in the hippocampal formation, where neurons are predominantly found (14). The specific expression pattern of miR-3099 in the central nervous system during the late stages of embryonic development suggests that this miRNA may have a crucial role in regulating key markers involved in neurogenesis.

In this study, we aimed to determine the expression of miR-3099 in an in vitro model prior to pinpointing its function in neurogenesis. We used the Sox1-green fluorescence protein (GFP) knock-in 46C mES cell line developed by Austin Smith (15) to evaluate miR-3099 expression after neural induction. 46C mES cells are pluripotent and can differentiate in vitro into different types of cells, which makes them suitable for neural differentiation studies after neural induction (16). In 46C mES cells the pan-neural gene Sox1 confers cell-autonomous green fluorescence and puromycin resistance once *Sox1* is expressed (17). The *Sox1* gene is a specific marker for mammalian neural progenitors such that GFP expression in 46C mES cells would serve as an indicator of successful induction of 46C cell differentiation into neural progenitors. This property enables the purification of both neural and non-neural cells that are generated during neural differentiation of these cells (17).

Materials and Methods

Embryonic stem cell culture

The 46C mES cells were a gift from John Mason (University of Edinburgh, United Kingdom). The cells were routinely cultured in 1X GMEM (BHK-21; Gibco) supplemented with 10% (v/v) fetal bovine serum (FBS; Gibco), 1% MEM non-essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 0.1 mM 2-mercaptoethanol (Gibco), 2 mM L-glutamine (Gibco) and 10 µg ml-1 human recombinant leukaemia inhibitory factor (LIF; Millipore) on a 0.1% gelatin (Sigma)

coated plate. The cells were sub-cultured every other day when the cells were 70-80% confluent.

Neural differentiation assay

Neural differentiation was carried out using a monolayer differentiation protocol adapted from Ying et al. (18). Undifferentiated mES cells were dissociated and cultured on a 0.1% gelatin-coated plate in DMEM/F12 supplemented with N2 (Gibco). After 24 hours, half of the medium was removed by aspiration and replaced with a 1:1 ratio of DMEM/F12-N2 and neurobasal-B27 (N2/B27; Gibco). The N2/B27 medium was changed every other day.

Immunocytochemistry

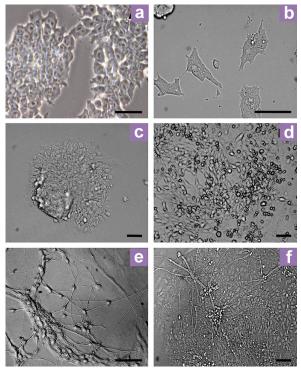
Immunocytochemistry (ICC) was conducted in 24-well plates. The attached cells were fixed in 4% paraformaldehyde (PFA; 50 mM NaOH, 1X PBS) for 30 minutes before permeabilization in 1% Triton-X100 for 15 minutes at room temperature (RT). Cells were then blocked for 30 minutes at RT (0.3% bovine serum albumin, 1% appropriate serum, 0.1% Tween-20 in 1X PBS) prior to incubating the cells in 1/200 dilution of primary antibody Tuj1 (Sigma) at 4 °C overnight. After rinsing with 1X PBS twice, the cells were then incubated with a 1/200 dilution of Alexa Fluor 488 donkey anti-mouse IgG (H+L; Life Technologies) secondary antibody for 1-2 hours at RT in the dark. The cells were counterstained with propidium iodide (Sigma) for 10 minutes at RT after rinsing with 1X PBS twice. The cells were then left in PBS in the dark until visualisation with an IX51 inverted fluorescent microscope (Olympus).

Reverse transcriptase-polymerase chain reaction

Isolation of total RNA from the stem cells was performed using TRIzol® Reagent (Invitrogen) according to the manufacturer's protocol under RNAse free conditions. Reverse transcription of miR-3099 was performed on 0.5-1.0 µg of total RNA using the Superscript® III Reverse Transcriptase kit (Invitrogen) according to a modified protocol as described previously (14). Briefly, a stem-loop primer (5'-GTTGGCTCTG GTAGGATGCC GCTCTCAGGG CATCCTACCA GAGCCAACTC CCCA-3') was used to prime miR-3099. The reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed using a specific forward primer for miR-3099 (5'-CGCGTAGGCT AGAGAGAGGT-3') a universal reverse primer for the stem-loop primer (5'-GTAGGATGCC GCTCTCAGG-3') in 1X LC480 Probe Master Mix (Roche) according

to Ling et al. (14) with the pre-amplification step omitted. Reverse transcription of other genes (16 genes) was performed on oligo-d(T)20 primed reactions. RT-PCR was then carried out in 1X LC480 Probe Master Mix (Roche) according to the manufacturer's protocol. The primers used are summarized in Table 1. PCR reactions were performed in an Eppendorf Mastercycler® gradient (Eppendorf) PCR machine with a pre-denaturation step at 94 °C for 10 minutes followed by 30–35 cycles of 94 °C for 10 seconds (denaturation), 60 °C for 30 seconds (annealing) and 72 °C for 10 seconds (elongation) with an additional elongation step at 72 °C for 5 minutes. Qualitative RT-PCR analysis was performed on an ethidium bromide stained 2% (w/v) agarose gel after electrophoresis.

Table 1: Summary of primers used for RT-PCR analysis						
Gene		Primers $(5' \rightarrow 3')$	GC%	Tm (°C)	Annealing (°C)	Amplicon size (nt)
Pgk1	Forward	TACCTGCTGGCTGGATGG	61	60	60	65
	Reverse	CACAGCCTCGGCATATTTCT	50	60		
Hmbs	Forward	AAAGTTCCCCAACCTGGAAT	45	59	60	98
	Reverse	CCAGGACAATGGCACTGAAT	50	60		
Oct4	Forward	CACGAGTGGAAAGCAACTCA	50	60	60	129
	Reverse	GCTTTCATGTCCTGGGACTC	55	59		
Nanog1	Forward	TGCTTACAAGGGTCTGCTACTG	50	59	60	76
	Reverse	GAGGCAGGTCTTCAGAGGAA	55	59		
Sox2	Forward	CGCCCAGTAGACTGCACA	61	59	60	95
	Reverse	CCCTCACATGTGCGACAG	61	59		
Sox1	Forward	TTGAGGCAGCTGGGTCTC	61	60	60	75
	Reverse	GCTGTTGTCCCTATCCTTGG	55	59		
Nestin	Forward	TCCCTTAGTCTGGAAGTGGCTA	50	60	60	68
	Reverse	GGTGTCTGCAAGCGAGAGTT	55	60		
Tuj1	Forward	GCGCATCAGCGTATACTACAA	48	59	60	85
	Reverse	CATGGTTCCAGGTTCCAAGT	50	59		
Mtap2	Forward	TCCTCCATCCTCCTCCT	61	59	60	114
	Reverse	GCGAATTGGTTCTGACCTG	53	59		
Neurod1	Forward	GGGAACAGCCTTACCCTTGT	55	60	60	67
	Reverse	CCACCAGAAATCACCAGGAG	55	60		
Sox4	Forward	ACAGCGACAAGATTCCGTTC	50	60	60	62
	Reverse	GTCAGCCATGTGCTTGAGG	58	60		
Sox11	Forward	GTGGCGGTCAGGATAAAGAG	55	59	60	75
	Reverse	TCTCAGCGCCACATCTCTC	55	60		
NeuN	Forward	CTACACACCCGCACAGACTC	60	59	60	105
	Reverse	GTCTGTGCTGCTTCATCTGC	55	59		
Gfap	Forward	CGCCACCTACAGGAAATTG	53	59	60	76
	Reverse	CTGGAGGTTGGAGAAAGTCTGT	50	59		
Olig1	Forward	GCGTCCTTTCCTTGTCCAG	58	60	60	76
	Reverse	CCTCCTAGATCCGCATGGT	58	60		
Cspg4	Forward	GGCCGTGATGGTGTCTTT	56	59	60	111
	Reverse	GCAGCCACAGTGATCTTGG	58	60		


Results

In this study 46C mES cells were cultured on gelatin-coated plates for 22 days after neural induction using N2 and B27 supplements (Figure 1a). The mES cells differentiated into neural progenitor cells on day 3 (Figure 1b). On day 7, the cells differentiated into neuronal precursor cells (Figure 1c) and continued to differentiate into a mixture of cells, including those resembling immature and mature neurons on day 17 (Figure 1d) and 22 (Figure 1e), respectively.

To ascertain that the 46C cells differentiated into neurons, we performed ICC on cells 7 days after neural induction. The 46C mES cells responded to neural induction by developing and expressing markers for neural precursor and immature

neuronal cells (Figure 2). Immunolabeling was performed on day 7 after induction, and revealed cells labelled for *Tuji*, a marker for immature neurons (Figure 2a, 2b). Neural precursor cells expressing *Soxi* were also observed as GFP positive cells 7 days after neural induction (Figure 2c, 2d). The 46C transgenic mES cells have a knock-in GFP (green fluorescent protein) within the *Soxi* gene locus, which served as a reporter gene that represents the expression of *Soxi* (15). These observations suggest a successful induction of mES cells in the neural stem cell lineage.

We further examined the expression of various markers at the transcript level using 46C mES cell cultures at various time points after neural induction. Qualitative RT-PCR was performed to evaluate markers for stem cells

Figure Mouse embryonic stem differentiation after neural induction at (a) day o (mouse embryonic stem cells), (b) day 3 (neural progenitor cells), (c) day 7 (precursor cells), (d) day 11 (immature neural cells), (e) day 17 (immature/differentiating neural cells) and (f) day 22 (differentiating/mature neural cells). The scale bar represents 50 µm for all micrographs except for (c), which represents 100 µm.

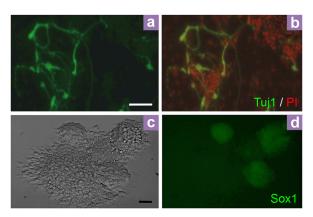
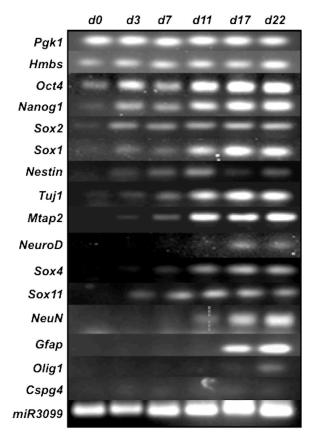



Figure 2: (a,b) Immunocytochemistry at day 7 after induction by using antibody against Tuj1 the special marker for immature neurones. (c,d) Sox1 expression was detected on cells 7 days after neural induction. 46C transgenic mouse embryonic stem cells bear a knock-in GFP (green fluorescent protein) that fluoresce under UV excitation, which served as a reporter gene that represent the expression of Sox1. PI denotes propidium iodide and the scale bar represents 50 µm for micrographs (a) and (b) whereas represents 100 um for micrographs (c) and (d).

(Oct4, Nanog and Sox2), neural progenitor cells (Sox1 and Nestin), immature neurons (Tuj1), differentiating neurons (Mtap2, Sox4 and Sox11) mature neurons (NeuN and NeuroD), astrocytes (Gfap) and oligodendrocytes (Olig1 and Cspq4; Figure 3). Our results showed that the expression of undifferentiated cell and neural progenitor cell markers was present at all the time points, whereas markers for both immature and differentiating neurons were seen from day 3 and onwards with obvious expression observed on days 11-22. Expression of mature neuronal markers was first observed on day 11 as indicated by NeuN, which together with NeuroD became significant from day 17 and onwards. A proportion of cells differentiated into astrocytes as indicated by Gfap expression on days 17-22. We also observed only weak expression of Olig1 for oligodendrocytes on day 22. Qualitative RT-PCR analysis indicates a heterogeneous population of cells in 46C mES cell cultures at 3-22 days after neural induction.

Using the same RNAs isolated from 46C

Figure 3: Semi quantitative RT-PCR cells on total RNAs purified from mES cells on day 0, 3, 7, 11, 17, and 22 after neural induction for various markers and *miR-3099* expression.

mES cell cultures at various time points after neural induction, qualitative stem-loop RT-PCR was performed to evaluate the level of *miR-3099* expression. This analysis showed that *miR-3099* was expressed at all-time points assessed (Figure 3), and was upregulated starting on day 7 after neural induction. The expression was approximately 2-3-fold higher on days 17 and 22 when compared to 0–3 days after neural induction.

Discussion

In this study we found a heterogeneous population of cells was present in mES cell cultures 22 days after neural induction. This observation concurs with previous neural differentiation studies involving mES cells (19) and human embryonic stem cells (20). The coexistence of stem cells, precursor cells and differentiated cells such as neurons, astrocytes, and oligodendrocytes exemplifies the heterogeneity of cell lineage specification and development in the culture. As demonstrated in previous studies (19,20), pluripotent cells were found together with cells from various lineages that matured at different rates and in turn leads to cell type heterogeneity in culture. In addition, our analysis at the RNA level of various markers for different cell types such as stem cells, neural precursor cells and differentiating/differentiated cells is in agreement with previous studies (16,20-25). To date, the characterisation of mES cells using various markers has been well-established. Oct4 and Nanog mRNA were upregulated during the pluripotent stage of mES cells (21), whereas Sox1 and Nestin proteins were expressed in neural precursor cells (16,22). After neural induction, Tuj1, NeuN, Gfap, and Olig2 markers were expressed in differentiating neurons, mature astrocvtes and oligodendrocytes, respectively (20,23-25). Our study also included additional markers for different cell types across the differentiation process, including Sox2 (stem cells), Map2, Sox4, Sox11 (differentiating neurons) and NeuroD (mature neurons), with expression levels that were in line with the commonly used markers described above.

miRNAs play a very important role during the modulation of ES cell maintenance and differentiation (26,27). At least a dozen miRNAs have been found to be differentially expressed as pluripotent ES cells differentiate or commit and differentiate into neural lineage cells (27). miR-9 and miR-134 were both implicated in the regulation of neural stem cell self-renewal and fate determination as well as epigenetic regulation of neural stem cell proliferation (28). In this study, the *miR-3099* expression profile supported previous transcript analyses performed on mES cells as well as neuro-differentiating P19 teratocarcinoma cells (14). Upregulation of *miR-3099* in the cell culture model containing differentiating and differentiated/mature cells of a neural lineage suggests that this miRNA plays a crucial role in neural differentiation. Concurring with *miR-3099* localisation to brain regions consisting of mainly neurons in an early embryonic development stage (14), we propose that the *miR-3099* functions as a key regulator of neurogenesis processes.

Conclusion

In this study, *miR-3099* was found to be upregulated in differentiating 46C mES cells 7 days after neural induction, indicating that this miRNA may play an essential role during neuron differentiation. However, we could not exclude the possibility that the proliferation of stem cells after neural induction may contribute to this upregulation. Therefore, a better characterised or optimised differentiated neural stem cell culture would allow a more refined analysis of the cellular function and molecular targets of *miR-3099*, especially during neuron development.

Acknowledgement

This work was supported by the Research University Grant Scheme, Universiti Putra Malaysia (UPM) (04-02-12-2120RU) awarded to K.-H.L.; the Exploratory Research Grant Scheme, Ministry of Education, Malaysia (ERGS/1/11/SKK/UPM/03/1) awarded to P.-S.C. W.-H.S. was a recipient of Malaysian Ministry of Education MyMaster scholarship and UPM Graduate Research Fellowship (GRF). S.Z.A. was supported by the ScienceFund grant (02-01-04-SF1306) awarded to P.-S.C.

Conflict of Interest

None.

Funds

Research University Grant Scheme, Universiti Putra Malaysia (04-02-12-2120RU) Exploratory Research Grant Scheme, Ministry of Education (ERGS/1/11/SKK/UPM/03/1) and ScienceFund grant (02-01-04-SF1306).

Authors' Contributions

Conception and design: KHL

Analysis and interpretation of the data, final approval of the article: KHL

Drafting of the article: SZA, KHL

Critical revision of the article for the important

intellectual content: PSC, RR, NN, KHL

Administrative, technical or logistic support: NN,

Collection and assembly of data: MA, CMN, WHS

Correspondence

Dr Ling King Hwa BSc (Hons), MSc (UPM), PhD (Adelaide) Genetic and Regenerative Medicine Research Center Faculty of Health and Sciences Universiti Putra Malaysia 43400 Serdang Selangor, Malaysia

Tel: +603-8947 2564 Fax: +603-8947 2646 Email: lkh@upm.edu.my

References

- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*. 2004;116(2):281– 297. doi: 10.1016/S0092-8674(04)00045-5.
- Ketting RF. microRNA Biogenesis and Function: An Overview. Adv Exp Med Biol. 2010;700:1–14. doi: 10.1007/978-1-4419-7823-3_1.
- Christensen M, Schratt GM. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. *Neurosci Lett.* 2009;466(2):55-62. doi: 10.1016/j. neulet.2009.04.043.
- Fiore R, Khudayberdiev S, Saba R, Schratt G. MicroRNA function in the nervous system. *Prog Mol Biol Transl Sci.* 2011;102:47–100. doi: 10.1016/B978-0-12-415795-8.00004-0.
- McNeill E, Van Vactor D. MicroRNAs shape the neuronal landscape. *Neuron*. 2012;75(3):363–379. doi:10.1016/j.neuron.2012.07.005.
- Im H-I, Kenny PJ. MicroRNAs in neuronal function and dysfunction. *Trends Neurosci*. 2012;35(5):325– 334. doi: 10.1016/j.tins.2012.01.004.
- Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol. 2013;25(2):215– 221. doi: 10.1016/j.ceb.2012.12.007.
- Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. *Proc Natl Acad Sci U S A*. 2010;107(5):1876–1881. doi: 10.1073/pnas.0908750107.

- Sun G, Ye P, Murai K, Lang M, Li S, Zhang H, et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. *Nat Commun*. 2011;2:529. doi: 10.1038/ncomms1532.
- Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young , but not old , mice by reducing p16 Ink4a and p19 Arf expression. *Cell.* 2008;135(2):227-239. doi: 10.1016/j.cell.2008.09.017.
- Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. *J Cell Biol.* 2010;189(1):127–141. doi: 10.1083/jcb.200908151.
- Makeyev E V, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. *Mol Cell*. 2007;27(3):435–448. doi: 10.1016/j.molcel.2007.07.015.
- Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. *Nat Neurosci*. 2009;12(4):399– 408. doi: 10.1038/nn.2294.
- Ling KH, Brautigan PJ, Hahn CN, Daish T, Rayner JR, Cheah P-S, et al. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics. 2011;12(1):176. doi: 10.1186/1471-2164-12-176.
- Aubert J, Stavridis MP, Tweedie S, O'Reilly M, Vierlinger K, Li M, et al. Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knockin mice. *Proc Natl Acad Sci U S A*. 2003;**100(Suppl** 1):11836–11841. doi: 10.1073/pnas.1734197100
- Diogo MM, Henrique D, Cabral JMS. Optimization and integration of expansion and neural commitment of mouse embryonic stem cells. *Biotechnol Appl Biochem*. 2008;49(Pt 2):105–112. doi: 10.1042/ BA20070011.
- Stavridis MP, Smith a G. Neural differentiation of mouse embryonic stem cells. *Biochem Soc Trans*. 2003;31(Pt 1):45-49.
- Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. *Nat Biotechnol.* 2003;21(2):183–186. doi: 10.1038/ nbt780.

- 19. Rathjen J, Rathjen PD. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. *Curr Opin Genet Dev.* 2001;**11(5)**:587–594. doi: 10.1016/S0959-437X(00)00237-9.
- Pruszak J, Sonntag K-C, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. *Stem Cells*. 2007;25(9):2257–2268. doi:10.1634/stemcells.2006-0744.
- 21. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. *Nature*. 2008;**453(7194)**:519–523. doi: 10.1038/nature06968.
- Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. *Nat Neurosci*. 2004;7(9):1003–1009. doi: 10.1038/nn1 301.
- 23. Wichterle H, Lieberam I, Porter J a, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. *Cell.* 2002;**110(3)**:385–397. doi: 10.1016/S0092-674(02)00835-8.
- Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D, et al. Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. *PLoS One.* 2009;4(7):e6286. doi: 10.1371/ journal.pone.0006286.
- 25. Billon N. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. *J Cell Sci.* 2002;**115(18)**:3657–3665. doi: 10.1242/jcs.00049.
- Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, et al. miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J. 2010;24(9):3255-3263. doi: 10.1096/fj.09-152207.
- 27. Parsons XH. MicroRNA Profiling Reveals Distinct Mechanisms Governing Cardiac and Neural Lineage-Specification of Pluripotent Human Embryonic Stem Cells. *J Stem Cell Res Ther*. 2012;**2(3)**:124.
- 28. Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, et al. MicroRNA regulation of neural stem cells and neurogenesis. *J Neurosci.* 2010;30(45):14931–14936. doi: 10.1523/JNEUROSCI.4280-10.2010.