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Abstract: The present study developed a novel approach for transforming red mud (RM)
into soft magnetic materials (SMMs) for applications in advanced electrical devices in
the form of Fe-Si and Fe-Si-Al alloys. A total of ten blends were prepared based on
two RMs, three iron oxide additives (Fe;Os, black and red mill scales), alumina and
carbonaceous reductants in a range of proportions. Carbothermic reduction of the blends
was carried out in a vertical Tamman resistance furnace at 1600-1650 °C for 30 min in an
argon atmosphere; synthetic graphite was used as a reductant. Reaction products were
characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy
(EDS), X-ray fluorescence (XRF) and X-ray diffraction (XRD). Significant amounts of Fe-rich
metallic droplets/regions of different grain sizes (0.5 to 500 um) were produced in these
studies. The formation of Fe-Si alloys with Si contents from 3.9 to 6.7 wt.% was achieved in
8 out of 10 blends; the optimal levels of Si for SMMs ranged from 3.2 to 6.5 wt.%. There was
clear evidence for the formation of Fe-Si-Al (up to 1.8 wt.% Al) alloys in 4 out of 10 blends. In
addition to lowering operating challenges associated with RM processing, blending of RMs
with iron oxide additives and alumina presents a novel recycling approach for converting
RMs into valuable SMMs for possible emerging applications in renewable energy, storage,
electrical vehicles and other fields. Along with reducing RM stockpiles across the globe,
this approach is expected to improve resource efficiency, mitigating environmental impacts
while generating economic benefits.

Keywords: red mud; industrial waste; soft magnetic materials; recycling; additives;
metal recovery
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1. Introduction

Red mud, also known as bauxite residue, is a massive waste by-product of the alu-
minum industry, generated during the production of alumina from the bauxite ore by the
Bayer method [1]. Producing one tonne of alumina generates an estimated 1.0-1.5 tonnes
of red mud [2]. With the global generation of RM expected to exceed 200 million tonnes
annually, red mud stockpiles have surpassed 4.6 billion tonnes worldwide, and continue to
increase steadily [3,4]. RM is considered as one of the largest industrial wastes produced in
the nonferrous metal industry [5]. The production of red mud is expected to increase at
an even faster rate in future due to upward trends in global demand for aluminum metal,
and with continued decline in the availability of high-grade bauxite ore [6,7]. Generally
stored in vast waste reserves, RM is a significant environmental threat due to its high
salinity, high alkalinity, presence of radioactive elements, small particle sizes and being
voluminous [8,9]. Several environmental incidents involving red mud storage facilities
have already been reported in the literature [10]. In addition to spillage, there is a strong
likelihood of soil and groundwater contamination, which can harm the local population
as well as the surrounding ecosystem [11]. Environmentally sustainable, technically and
economically feasible disposal of red mud is a major challenge and a pressing issue for the
aluminum industry as a whole. With typical utilization/recycling rates for RMs ranging
between 4-10% across the globe [12], developing novel, economically viable recycling
routes and producing value-added products from RMs is a great incentive. Most current
options can only accommodate a small fraction of the red mud generated globally [13].

In the present research, we present a novel approach to the transformation of red mud
into value added products for different technological applications, e.g., advanced electrical
devices, ferrous alloys and others. A brief overview is presented next on the current status
of RM waste management strategies, basic background on soft magnetic materials and
aims of the investigation for a proper perspective.

1.1. RM Waste Management Strategies

Extensive efforts have been made toward processing, recycling and utilizing RM
waste and resource recovery; several excellent reviews are available on various aspects
of managing RM waste [12,14-16]. Depending on the composition of the bauxite ore and
technical processes involved in the extraction of bauxite, the major constituents of RM
are: Fe,O3: 11-46 wt.%; Al,O3: 15-21.2 wt.%; SiO,: 4.4-18.8 wt.%; TiO;: 4.9-21.2 wt.%;
CaO: 1-22.2 wt.%; and NayO: 1-10.3 wt.% [17]. Key approaches used in RM recycling
include building and functional materials [18-20]; recovery of iron and other metals [21-23],
adsorption, removal of impurities, material modification etc. [24-26].

Cementitious materials have been prepared by mixing RMs (up to 24%) with waste
slags as filler materials for mine backfilling and stabilizing underground cavities; this
approach takes advantage of the high alkalinity, fine particulate sizes and extensive capillary
pores present in the RMs to produce materials with high compressive strength [27]. Red
mud has also been used extensively in the preparation of pavement materials for the
construction of roads [28]. High contents of iron and alumina were found to aid the
clinkering process, the production of concretes and cements with desired compressive and
flexural strengths [29]. Mixtures of clay and RM (20-50 wt.%) were sintered (800-1100 °C)
to prepare ceramic bricks for construction applications [30]; other types of bricks such as
non-fired, ceramic glazed tiles, non-steam cured bricks, hollow bricks, decorative bricks, fly
ash bricks etc. have also been prepared [31,32]. Glass ceramics containing CaO, SiO; and
Al>,O3 have been produced with up to 85% industrial waste mixtures (fly ash and RM) [33];
lightweight building aggregate ceramics have also been prepared with mixtures of RMs,
fly ash and silica [34].
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Fe-bearing constituents of RMs are typically present in the form of oxides or oxyhy-
droxides; their concentrations can range between 11 to 46 wt.% depending on the source
and location [17,35]. Several techniques such as hydrometallurgical [36], low temperature
carbothermal reduction [37], high gradient superconducting magnetic separation [38], sul-
furic acid leaching [39], smelting reduction [40], suspension reduction [41], bioleaching [42]
etc. have been used for separating and recovering iron-bearing phases. In order to extract
the residual alumina from RMs, hydrometallurgical as well as biometallurgical approaches
have been developed [43]. Titanium has been recovered from various RMs using acid
leaching followed by heat treatments [44] or through hydrolysis, calcination and acid
leaching [45]. Several studies have been reported on extracting rare earth elements such
scandium, yttrium, gallium etc. from RMs using selective leaching with minerals as well
organic acids in a hydrometallurgical approach [46,47]. Other applications of RMs include
the treatment of wastewater, producing magnetic additives from red mud and bagasse,
alumina based, neutralizing acid mine drainage, mitigation of environmental impacts,
preparation of nickel iron and copper ions adsorbents [48-51].

1.2. Soft Magnetic Materials

The discovery of silicon-based electrical steels is considered a major milestone in the
field of soft magnetic materials (SMMs) [52]. Soft magnetic materials play a key role in the
conversion of electrical energy and power electronics through devices such as transformers,
inductors, electrical machines, motors and generators, etc.; these can rapidly switch their
magnetic polarization under small, applied fields [53]. In both AC and DC applications,
these materials play a vital role in various facets of power generation, conversion and energy
sectors [54]. With an annual growth rate in excess of 18%, the worldwide demand for SMMs
is expected to reach about 103,000 tonnes in 2023 [55]. New electrical vehicles, including
charging piles, photovoltaic and variable-frequency air conditioning units, accounted for
29.2%, 33.4% and 26.1%, respectively of the total demand for SMMs [56].

Silicon steels dominate the global market (more than 90% by volume) of soft magnets,
and are a material of choice for electrical machines and large transformers [57]. Together
with balanced characteristics, magnetic parameters and low costs, electrical steels with a
silicon content of 3.2 wt.% are among the most widely used SMMs [58]. However, these
SMMs, both amorphous and nanocrystalline phases, are limited by their poor mechanical
strengths, limited availability, and high costs that significantly hamper their widespread in-
dustrial utilization [59]. With better permeability and lower losses, ductile high silicon steels
(Fe-6.5 wt.% Si) are showing great promise for high power inductors [60]. Ternary alloys
such as Fe-Si-Al, Fe-5i-Cr, Fe-Si-Cu and others are also being developed toward enhancing
saturation polarization and improved ductility and for high-frequency applications [61].

Although these materials have been used in the industry for several decades, the
demand for electrical steels is skyrocketing these days, especially for use in high-powered
electrical motors for electrical vehicles. Efficient and cost-effective SMMs play a key role in
the adoption of electric vehicles and in renewable electricity. According to global statistics
for 2024, 13.68 million electric vehicles were sold, 2.54 million charging stations installed
and the revenue was expected to reach 786.2 billion USD worldwide [62]. Therefore, there
is immense potential for developing new technologies and avenues by producing basic
material resources for electrical steels/SMMs.

1.3. Aims of the Investigation

Although several approaches are being used for recycling RMs, the overall recycling
rates continue to be very low (~10%). For a recycling approach to be commercially success-
ful, its economic viability along with environmental sustainability is of crucial importance.
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With the focus on producing value added products from RMs, this investigation aimed to
transform RMs into electrical steels for utilization in advanced electrical devices. Using
iron-based additives, alumina and carbonaceous reductants, RMs were transformed into
Fe-Si and Fe-Si-Al SMMs. The present research could lead to significant advances in waste
valorization and environmental sustainability by producing basic raw materials for emerg-
ing applications in renewable energy, storage, electrical vehicles, mobile communications,
and robotics.

2. Materials and Methods
2.1. Materials and Blend Compositions

Two sets of studies were carried out in this investigation based on RMs from two
sources and their blends with several additives, namely, Fe;O3, primary (black) mill scales
(MS) and secondary (red) mill scales. Two RMs labeled as RMA and RMB were sourced
from the Ural Aluminum Plant, Kamensk-Uralsky, Russian Federation and the Bogoslovsky
Aluminum Plant Russian Federation, respectively. While the black MS is composed of
three different iron oxides, namely wiistite (FeO), magnetite (Fe304), and hematite (Fe,O3),
the red MS is essentially composed of red ferric oxide (Fe;O3) [63]. These mill scales were
sourced from the steel plants of ArcelorMittal, Temirtau, Kazakhstan. Further details of
their basic characteristics are given elsewhere [64]. In Set I, two blends were prepared:
blend#1 (20 g RMA + 20 g of Fe;O3) and blend#2 (20 g RMA + 20 g of red MS). The
composition of RMA and its blends are provided in Table 1. With red MS ~ 100% Fe;O3
(apart from minor impurities), the data for the Fe,O3 holds for the red MS as well.

Table 1. Chemical composition of RMA and its blends for Set I (wt.%).

Blends Fe203 A1203 Si02 CaO MgO NaZO 80327 P205 Ti02

RMA 36.9 11.8 8.7 23.8 1.0 0.3 0.1 0.4 3.5
20 g RMA +20 g FepO3  68.5 59 44 11.9 0.5 0.1 0.1 0.2 1.8
20gRMA +20gred MS  68.5 59 44 11.9 0.5 0.1 0.1 0.2 1.8

In Set II, a fraction of RMB was replaced with alumina (Al,O3). Two combinations
were used as follows: in the first one, 20 g of RMB was replaced with 5 g Al,O3 + 15 g RMB;
and in the second one, 20 g RMB was replaced with 10 g Al,O3 + 10 g RMB. These mixtures
were then blended with 20 g Fe,O3 or 20 g red MS. The composition of the RMB and its
blends have been provided in Table 2.

Table 2. Chemical composition of RMB and its blends for Set II (wt.%).

Blends Fe203 A1203 SiOz CaO MgO Na20 5032_ P205 Ti02
RMB 50.0 11.2 8.7 10.7 0.6 3.8 0.1 0.3 41
20 g Fe;O3 + 5 g Al,O3 + 15 g RMB 68.8 16.7 3.3 4.0 0.2 14 0.01 0.1 1.5

20 g Fe;O3 + 10 g Al,O3 + 10 g RMB 62.5 27.8 22 27 0.2 1.0 0.0 0.1 1.0
20 g red MS + 5 g Al,O3 + 15 g RMB 68.8 16.7 3.3 4.0 0.2 1.4 0.1 0.1 1.5
20 g red MS + 10 g Al,O3 + 10 g RMB 62.5 27.8 22 2.7 0.2 1.0 0.0 0.1 1.0

In Set III, black MS was used as the iron additive, which is a mixture of three iron oxides,
namely, FeO, Fe,O3; and Fe3Oy; the net iron content is listed in Table 3 as Fe;Os. As the black
MS, the primary mill scale, is often referred to as just MS, the label MS is used in Table 3.
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Table 3. Chemical composition of RMB blends with MS and Al,Oj3 for Set III (wt.%).

Blends Fe203 A1203 Si02 CaO MgO Na20 5032_ P205 Ti02
20 g MS + 20 g RMB 75.0 5.6 44 5.3 0.3 1.9 0.1 0.2 2.0
20 g MS +5 g Al,O3 + 15 g RMB 68.8 16.7 3.3 4.0 0.2 14 0.1 0.1 1.5
20 g MS + 10 g Al,O3 + 10 g RMB 625 278 22 2.7 0.2 1.0 0.0 0.1 1.0

Synthetic graphite was used as the reductant in these investigations; 10 g of graphite
was added to 40 g of RMs/various blends prior to the heat treatments.

2.2. Experimental

The carbothermic reduction of blends was carried out in a vertical Tamman resistance
furnace. The schematic representation of the furnace and details regarding the furnace
operation have been presented elsewhere [64]. Small graphite crucibles (diameter: 20 mm;
height: 90 mm, wall thickness: 2 mm) were used to load about 10 g of various powdered
blends; three of these crucibles were then loaded in a large cylindrical graphitic container
for simultaneous heat treatments. A W-Re thermocouple was placed in the large crucible
for measuring temperatures and thermal control. The furnace was heated to 1600-1650 °C
at a heating rate of 10-20 °C/min and was continuously purged with argon (0.5 L/min).
Specimens were held at the set temperature for 30 min. At the end of the heat treatment,
the furnace was switched off. The crucibles were allowed to cool down within the furnace;
the samples were extracted from the furnace at room temperature. All experiments and
analytical investigations on the heat treated products were repeated at least three times.
A number of analytical techniques, such as scanning electron microscopy (SEM), energy
dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF), were
used for in-depth characterization. The SEM, EDS, and XRF investigations were carried
out on a Tescan Vega 3 (TESCAN, Czech Republic with Oxford instruments EDS detector)
with sub-micron resolution. The specimens were carbon-coated prior to microscopic
investigations; XRF/EDS was carried out for microscopic and elemental analyses of the
reaction products. The XRD data were collected with an X-ray diffractometer (Difrey 401,
Scientific Instruments, St. Petersburg, Russia) with Cu K« radiation: 45 KV, 40 mA, angular
range: 10-90°, step size: 0.1° and a time step: 5 s [64].

3. Results
3.1. Set I: Blends of RMA with Fe;O3 and Red MS

Figure 1 shows SEM-EDS images of reaction products after carbothermic reduc-
tion of RMA at 1600-1650 °C for 30 min. The metallic phase is present throughout
the matrix in the form of very small micron sized droplets. The slag phase/other solid
phases can be seen clearly. The typical composition of the metallic phase was identi-
fied as: 86.9 wt.% Fe, 9.9 wt.% Si and 1.1 wt.% P. The constituents of the slag phase were:
46.9 wt.% O, 25.4 wt.% Al, 24.6 wt.% Ca, 2.4 wt.% 5i, 0.4 wt.% Mg, and 0.3 wt.% Fe. SEM-
EDS observations were carried out at a number of close-lying points in various regions;
average values as determined from several measurements are reported here.

Figure 2 shows SEM-EDS images of reaction products after carbothermic reduction of
the 20 g RMA + 20 g Fe;O3 blend at 1600-1650 °C for 30 min. The metallic droplets had
grown in size, although they were still micron sized. The typical composition of the metallic
phase was determined as: 92.3 wt.% Fe, 5.6 wt.% Si and 2.1 wt.% Ti. The constituents
of the slag phase were: 45.3 wt.% O, 39.4 wt.% Ca, 14.8 wt.% Si, and 0.5 wt.% Fe. The
level of Si had reduced significantly in the metallic droplets; however, the Si levels had
increased significantly in the slag phase. These results indicate that the blending of RMA
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with Fe;O3 caused the movement of Si from the metallic phase to the slag phase. Some slag

domains/areas containing high levels of alumina were also observed.

50um

Figure 2. SEM-EDS plots of the 20 g RMA + 20 g Fe;O3 blend after carbothermic reduction at
1600-1650 °C for 30 min.
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Figure 3 shows SEM-EDS images of reaction products after carbothermic reduction of
the 20 g RMA + 20 g red MS blend at 1600-1650 °C for 30 min. The metallic droplets had
grown significantly in size. The typical composition of the metallic phase was determined
as: 92.4 wt.% Fe, 5.6 wt.% Si, 0.5 wt.% Al, 0.4 wt.% Ca and 0.3 wt.% P. The constituents of
the slag phase were: 37.8 wt.% O, 33.1 wt.% Ca, 24.4 wt.% Al, 4.5 wt.% Cl, and 0.3 wt.% Fe.
Some slag regions containing significant amounts of silica were also recorded.

S50um

Figure 3. SEM-EDS plots of the 20 g RMA + 20 g red MS blend after carbothermic reduction at
1600-1650 °C for 30 min.

A comparison of key findings from Figures 1-3 in terms of elemental distributions
is shown in Figure 4. Seen as bright droplets, the size of the metallic droplets showed
a continuous increase in going from Set I to Set III. In the case of Figure 4A (RMA), the
presence of Fe was recorded both in the metallic phase as well as the slag phase. Similar
observations were made for Si as well. However, both Ca and Al were present only in
the slag phase. In the case of Figure 4B (20 g RMA + 20 g Fe;O3), there were widespread
regions showing the simultaneous presence of Fe and Si; these regions were depleted of
both Ca and Al. However, there was a large particulate (bottom left corner) rich in Si and
Ca with little Fe. In the case of Figure 4C (20 g RMA + 20 g red MS), the sizes of the metallic
droplets rich in both Fe and Si had increased significantly. In addition, there were spherical
as well as large particles/phases of irregular outlines primarily containing Ca and Al only.
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Figure 4. Elemental distribution after carbothermal reduction: (A) RMA, (B) 20 g RMA + 20 g Fe,O3,
and (C) 20 g RMA + 20 g red MS blends.

3.2. Set II: Blends of RMB with Al,O3, Fe;O3, and Red MS
3.2.1. Blends of RMB with Al,O3 and Fe,O3

The results for two blend compositions are reported here: Set A (20 g Fe;O3 +5 ¢
Al,O3 + 15 g RMB) and Set B (20 g Fe,O3 + 10 g Al,O3 + 10 g RMB). The SEM-EDS elemental
composition results for the residues after carbothermic reduction at 1600-1650 °C for 30 min
are shown in Figure 5.

The first point to note in Figure 5 is the scale on the horizontal axis in the SEM
images. This scale is 1 mm, whereas the corresponding scales in Figures 1-4 were only
50 um. This means that the sizes of the metallic droplets were much bigger (20 times
or more) in the present scenario. The composition of the metallic phase in Set A was
determined as: 90.8 wt.% Fe, 6.7 wt.% Si, 1.7 wt.% C, 0.3 wt.% Al and 0.6 wt.% P. The
constituents of the slag phase were: 42.0 wt.% O, 12.0 wt.% Ca, 36.2 wt.% Al, 2.5 wt.%
Mg, and 0.5 wt.% Fe. In Set B, the composition of the metallic phase was determined as:
94.5 wt.% Fe, 3.9 wt.% Si, 0.9 wt.% C, and 0.7 wt.% Al. The constituents of the slag phase
were: 41.0 wt.% O, 11.0 wt.% Ca, 31.9 wt.% Al, 5.8 wt.% Fe, 0.6 wt.% S, and 0.4 wt.% Si.
Most of the Si was found concentrated in the metallic phase and very little in the slag phase.
Both calcium and aluminium were concentrated in the slag phase. These features are also
reflected clearly in the elemental distribution maps of Sets A and B.
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Set A: 20g Fe203 +5g A1203 +1 Sg RMB

Si Kal

Ca Kal Al Kal
i = .

Set B: 20g FezO;, +10g A1203 +10g RMB

Fe Kal

Figure 5. SEM-EDS elemental distribution images for Set A (20 g Fe;O3 + 5 g Al,O3 + 15 g RMB) and
Set B (20 g Fe,O3 + 10 g Al,O3 + 10 g RMB) after carbothermic reduction at 1600-1650 °C for 30 min.

3.2.2. Blends of RMB with Al,O3 and Red MS

Results of the elemental distribution maps as SEM-EDS elemental profiles for blends
with red MS are shown in Figure 6. Results for the two blend compositions are re-
ported here: Set A (20 g red MS + 5g Al,Os +15g RMB) and Set B (20 g red MS
+ 10 g Al,O3 + 10 g RMB). The composition of the metallic phase in Set A was determined
as: 88.7 wt.% Fe, 6.6 wt.% Si, 2.4 wt.% C, 1.8 wt.% Al and 0.5 wt.% P. The constituents
of the slag phase were: 47.7 wt.% O, 10.9 wt.% Ca, 36.7 wt.% Al, and 1.1 wt.% S. In Set
B, the composition of the metallic phase was determined as: 90.5 wt.% Fe, 6.5 wt.% Si,
1.3 wt.% C, 1.4 wt.% Al, and 0.5 wt.% P. The constituents of the slag phase were: 42.9 wt.%
O, 14.1 wt.% Ca, 39.0 wt.% Al, 0.9 wt.% Fe, and 0.6 wt.% S. Most of the Si was once again
found concentrated in the metallic phase and very little in the slag phase. While both Ca
and Al were found concentrated in the slag phase, there was a clear indication of pickup of
Al in the metallic phase. These features are reflected clearly in the elemental distribution
maps of Sets A and B as well.
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Set A: 20g red MS+5g ALO; +15¢ RMB

Fe Kal Si Kal
i

Si Kal

Set B: 20g red MS+10g Al,O; +10g RMB
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Figure 6. SEM-EDS elemental distribution images for Set A (20 g red MS + 5 g Al,O3 + 15 g RMB) and
Set B (20 g red MS + 10 g Al O3 + 10 g RMB) after carbothermic reduction at 1600-1650 °C for 30 min.

3.3. Set I1I: Blends of RMB with MS (Black) and Al,O3

The results for the three blend compositions are reported here: Set A (20 g MS + 20 g RMB),
Set B (20 g MS +5 g Al,O3 + 15 g RMB) and Set C (20 g MS + 10 g ALO; + 10 g RMB).
The SEM-EDS-Elemental composition results for the residues after carbothermic reduction at
1600-1650 °C for 30 min are shown in Figure 7.
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Set A. 20g MS + 20g RMB

o~ o

100um

Figure 7. SEM-EDS profiles for Set A: (20 g MS + 20 g RMB); Set B: (20 g MS + 5 g Al,O3 + 15 g RMB);
and Set C: (20 g MS + 10 g Al,O3 + 10 g RMB) after carbothermic reduction at 1600-1650 °C for 30 min.

It is important to note that the horizontal scale in Figure 7 is 100 pm as compared
to 50 pm in Figure 5 and 1 mm in Figure 6; this information has serious implications for
the sizes and recovery of metallic droplets. An iron-rich droplet containing 96.7 wt.% Fe,
1.8 wt.% C, 0.9 wt.% Al, and 0.6 wt.% Si was obtained from Set A (20 g MS + 20 g RMB). In
Set B (20 g MS + 5 g Al,O3 + 15 g RMB), large clusters of metallic regions were observed;
their composition was determined as: 92.3 wt.% Fe, 5.2 wt.% Si, 1.1 wt.% Al, 0.8 wt.% C,
and 0.6 wt.% Cr. In Set C (20 g MS + 10 g Al,O3 + 10 g RMB), large areas of metallic regions
were observed. Their composition was determined as: 91.1 wt.% Fe, 5.2 wt.% Si, 1.6 wt.%
Al 1.1 wt.% C, 0.7 wt.% Cr, and 0.3 wt.% P.
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3.4. X-Ray Diffraction Investigations

The XRD patterns of three representative examples are shown in Figure 8. All three
patterns showed several small peaks in addition to two strong peaks for C and Al;Os.
As small differences were observed in the heights of strong peaks (C and Al,O3) and
in the location of minor peaks, XRD plots for the three blends are shown separately as
Figure 8A—C. While the formation of new phases is indicated by the presence of small
peaks, it is difficult to characterize these phases at the moment. The likelihood of forming
amorphous phases also cannot be ascertained from the present data [61]. Heat treatments
for longer times would be necessary for a significant evolution/concentration of new
phases to extract quantitative structural information from the XRD data.

A: 20g Fe,0; + 10g Al,O; + 10g RMB

— 2500
3
8
>
=
(7]
c
(]
-~
£
o L L 1 1 L 1 i 1 . 1 L |
10 30 50 70 920
2 Theta (°)

B: 20gred MS + 10g Al,O, + 10g RMB
3000

2500 |
2000 |
1500 |
1000
500 |
o [ " L L 1 L " " 1 N " L Il
10 30 50 70 90
2 Theta (°)

Intensity (a.u.)

C: 20g black MS + 10g Al,O, + 10g RMB

3000
2500
2000
1500
1000
500

0 1 I 1 1 I L 1 1 1 1 L 1
10 30 50 70 20

2 Theta (°)

Intensity (a.u.)

Figure 8. X-ray diffraction patterns for the three (Fe;O3, red MS and black MS) blends with Al,O3
and RMB.
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4. Discussion

There were significant differences in the basic characteristics and compositions of

metallic droplets/regions as seen in Figures 1-8. The compositions and size ranges of the

metallic droplets are summarized in Table 4 for a quick comparison. Data have only been

provided for Fe, Si, and Al due to their importance for soft magnetic materials; detailed

information on other minor elements is available in the results section. High resolution

SEM images for all 10 blends are shown in Figure 9 for identifying the size ranges of the

metallic droplets with relative ease. These results will be discussed in terms of the three

sets of the investigation.

Table 4. Composition and size ranges of metallic droplets after carbothermic reduction of the various

blends investigated. The data for the Fe, Si and Al concentrations are reported in wt.%.

S. Blends Fe Si Al Size

1. RMA 86.9 9.0 - 1-3 um
2. 20 g RMA + 20 g Fe; O3 92.3 5.6 - 0.5-4 pm
3. 20 g RMA + 20 g red MS 924 5.6 0.5 5-15 um
4. 20 g Fe;O3 + 5 g A,O3 + 15 g RMB 90.3 6.7 0.03 60-300 um
5. 20 g Fe;O3 + 10 g A1,O3 + 10 g RMB 94.5 3.9 0.7 60-300 um
6. 20 g red MS + 5 g Al,O3 + 15 g RMB 88.7 6.6 1.8 100-500 um
7. 20 g red MS + 10 g Al,O3 + 10 g RMB 90.5 6.3 14 100-500 um
8. 20 g MS + 20 g RMB 96.7 - - 30-150 um
9. 20 g MS + 5 g Al,O3 + 15 g RMB 88.7 6.6 1.8 30-150 um
10. 20 g MS +10 g Al,O3 + 10 g RMB 90.5 6.5 14 30-150 um

Set I

50 pm

Figure 9. High resolution SEM images for blends #1 to 10 (based on data in Table 4) for estimating

the sizes of metallic droplets or regions.
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Set I: The blend #1 contained only RMA without any additives. Its key constituents
were: Fe;O3: 36.9 wt. %, Si0O;: 11.8 wt.%, Al,Os: 8.71 wt.% and CaO: 23.8 wt.%. The
levels of iron oxide present were on the low to medium side and relative proportions of
impurity elements were on the high side. Very small sized (1-3 pm) metallic iron droplets
were observed containing high levels of Si (9.0 wt.%). However, when Fe;,O3 was added
to RMA in a 1:1 proportion (blend #2), the composition changed to Fe,O3: 68.5 wt.%,
5i0;: 5.9 wt.%, Al,O3: 4.35 wt.% and CaO: 11.9 wt.%. With enhanced availability of Fe as
compared to various impurity elements, the levels of Si in the iron-based alloy were now
down to 5.6 wt.%. Similar results were obtained from blend #3 (Fe,O3 additive replaced
with red MS), albeit with significant increases in the sizes of the metallic droplets.

Set II: There were two key differences in the composition of the blends in Set II. Firstly,
the red mud (RMB) had a much higher iron content as compared with the RMA used in
Set I. Secondly, a portion of the red mud was replaced with alumina to reduce challenges
associated with red mud processing. Studies in Set I had already shown the usefulness
of adding Fe,O3 (or red MS) to RM to achieve better control over the composition of the
iron alloys. In Set II, alumina was added to the mix in addition to Fe,O3 (or red MS) and
the relative proportions of RMB were further reduced. These modifications led to major
differences in the iron-based alloys produced. As seen in Table 4 and Figure 9, the size of
the metallic droplets showed a massive growth in sizes increasing from 0.5-4 pum (blend # 2)
to 60-300 um (blends # 4, 5) with Fe,O3 and Al,O3 additives, and from 5-15 um (blend # 3)
to 100-500 um (blends # 6, 7) with red MS and Al,O3 additives. This interesting finding can
be interpreted in terms of atomic scale interactions between iron and alumina. Alumina is
well-known to be non-wetting to iron and the interaction between Fe and Al,O3 is repulsive
in nature [65]. In atomistic computer simulations, Fe and Al,O3 were shown to be mutually
exclusive with a tendency to displace each other [66]. The repulsion between alumina and
Fe tended to coagulate iron rich regions together into much bigger regions/sizes. This
result is of great significance while extracting iron-based alloys from the residues after
carbothermic reduction. Alumina is naturally present in red muds as complexes with
510, /NayO/K;0, etc.; however, the characteristics/behavior of these complexes can be
significantly different from that of pure alumina [67]. An increase in the Al,O3 content in
the slag can also increase the interfacial tension between the slag and the steel [68].

The second key facet is the elemental composition of the observed metallic regions.
The concentrations of Si in metallic iron were found to range between 3.9 to 6.7 wt.%,
ideal concentrations for soft magnetic materials. There was a pick-up of small amounts
of Al as well with values of 0.03 and 0.7 wt.% for blends #4 and #5 (Fe,O3 based) and 1.8
and 1.4 wt.% for blends #6 and #7 (red MS based). The pick-up of Al by iron droplets
has been previously reported by our group during valorization of iron and aluminium
oxide rich industrial wastes [69]. It has been shown that alumina degradation can occur
in the temperature range 1550-1700 °C in the presence of molten iron, carbon and inert
atmospheres [70]. Small particle sizes of red MS (20-80 nm) [71] and an associated large
surface area are expected to provide higher reactivity as compared to Fe;O3 powders (a
few microns in size), aiding the pick-up of Al by metallic iron [64].

Set III: Here, the key iron oxide additive was primary (black) MS, which contains iron
oxides in three chemical forms, i.e., FeO (wiistite), Fe30,4 (magnetite), and Fe,O3 (hematite).
It may also contain impurities such as C, Ca, Si, Na, Al, Cr, Mn, etc. [72]. It is a major
waste generated by the iron and steelmaking sector; nearly 39 million tonnes of MS were
generated worldwide in 2021 [73] and this can amount to about 2% of the total steel rolled
in rolling mills [74]. The results obtained with MS (a mixture of iron oxides) (blends #9,
10) were quite comparable to those obtained with red MS (Fe;O3 alone) (blends #6, 7).
The only difference was in the particle sizes of the metallic regions; these had reduced
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from 100-500 um to 50-150 pum. This result suggests that the presence of multiple oxides
of iron as additives would not have a detrimental influence on the generation of Fe-Si or
Fe-Si-Al alloys.

Concerning the formation of soft magnetic materials, a close inspection of Table 4
shows the formation of Fe-Si alloys in 8 out of 10 blends investigated; the only two un-
successful cases were blend #1 (RMA) and blend #8 (20 g MS + 20 g RMB). Optimal levels
of the alloying element silicon required for practical SMMs are between 3.2 to 6.5 wt.%
5i [58,60]. In this study, Si levels observed in the metallic droplets were found to range
between 3.9 to 6.7 wt.%; these values are right in the middle of the desired range. There was
also clear evidence for the formation of Fe-Si-Al alloys in 4 out of 10 blends investigated.
Previously, most studies were focused on extracting iron in the form of pig iron from a
variety of RMs [6,75] and little attention was paid toward extracting designer valuable
alloys from RMs.

Iron rich concentrates and ferroalloys generated in this study can be extracted by
grinding the roasted reaction products followed by magnetic separation and sieving [75,76].
Blends #4 to 7 hold good promise for extraction due to their large grain sizes and poor
adhesion to alumina rich slags and other reaction products. Future research is needed to
map the effects of blend compositions, temperature, heat treatment times, and reductants
toward enhancing the recovery of SMMs from a variety of RMs.

5. Conclusions

Based on our detailed study on the carbothermic reduction of two RMs in the pres-
ence of iron-based additives, alumina and carbonaceous reductants, we investigated the
formation of Fe-Si and Fe-Si-Al soft magnetic materials. Key findings from this study are
summarized below.

1. The carbothermic reduction behavior of two RMs and their blends with three
iron-oxides (Fe;Oj3, black and red MS) and Al,O; additives was investigated at
1600-1650 °C, 30 min as Sets I, IT and III. These were followed by detailed characteri-
zation of the reduction products, especially the metallic phases.

2. Silevels in the iron-rich metallic droplets showed a wide variation: SetI (5.6 to 9.0 wt.%),
Set II (3.9 to 6.7 wt.%) and Set III (6.5 to 6.6 wt.%), thereby indicating the key role of
initial blend compositions on Si pick-up by metallic droplets.

3. Abroad variation was observed in the particulate sizes of the metallic droplets/regions
generated: Set I (0.5 to 15 um), Set II (60 to 500 um), and Set III (30 to 150 pm). Non-
wetting and repulsive interaction between Al,O3 and Fe played a key role in the
assimilation of small droplets and subsequent growth of metallic regions. The Al,Os3
content in the slag can also affect the interfacial tension between the slag and the steel.

4.  The formation of Fe-5i was observed in 8 out of 10 blends investigated. With Si levels
ranging between 3.9 to 6.7 wt.%, these metallics will be a highly suitable raw material
for producing SMMs (optimal range: 3.2 to 6.5 wt.% Si). The formation of Fe-Si-Al
alloys, another type of SMM, was observed in 4 out of 10 blends investigated.

5. This study presents a new approach for recycling RMs and their transformation
into valuable SMMs for the energy sector. It will have a positive influence on the
sustainable developments in the field impacting resource recovery, conservation, and
economic/environmental sustainability.

6. Industrial waste such as RMs have little value, high disposal rates and extensive
transport costs. The novel approach to RM recycling developed in this study will
help conserve the natural environment and resources and reduce the burden on waste
storage facilities while closing the loop of a sustainable economy:.
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