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Abstract: Abiotic stresses, including drought, salinity, extreme temperatures and nutrient deficiencies,
pose significant challenges to crop production and global food security. To combat these challenges, the
integration of bioinformatics educational tools and AI applications provide a synergistic approach to
identify and analyze stress-responsive genes, regulatory networks and molecular markers associated
with stress tolerance. Bioinformatics educational tools offer a robust framework for data collection,
storage and initial analysis, while AI applications enhance pattern recognition, predictive modeling and
real-time data processing capabilities. This review uniquely integrates bioinformatics educational tools
and AI applications, highlighting their combined role in managing abiotic stress in plants and crops.
The novelty is demonstrated by the integration of multiomics data with AI algorithms, providing
deeper insights into stress response pathways, biomarker discovery and pattern recognition. Key AI
applications include predictive modeling of stress resistance genes, gene regulatory network inference,
omics data integration and real-time plant monitoring through the fusion of remote sensing and
AI-assisted phenomics. Challenges such as handling big omics data, model interpretability, overfitting
and experimental validation remain there, but future prospects involve developing user-friendly
bioinformatics educational platforms, establishing common data standards, interdisciplinary
collaboration and harnessing AI for real-time stress mitigation strategies in plants and crops.
Educational initiatives, interdisciplinary collaborations and trainings are essential to equip the next
generation of researchers with the required skills to utilize these advanced tools effectively. The
convergence of bioinformatics and AI holds vast prospects for accelerating the development of stress-
resilient plants and crops, optimizing agricultural practices and ensuring global food security under
increasing ‘environmental pressures. Moreover, this integrated approach is crucial for advancing
sustainable agriculture and ensuring global food security amidst growing environmental challenges.

Keywords: abiotic stress; environment; bioinformatics educational tools; artificial intelligence; crop
stress biology; crop improvement; sustainable agriculture

1. Introduction

Global climate change (GCC) causes major environmental disturbances that could have
harmful effects on the survival of all life forms across different biomes [1]. Experts predict
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that the global population will hit 9.1 billion by 2050, necessitating a 60–70% increase
in crop production to satisfy the increasing food demand [2]. The natural growth and
development mechanisms of sessile plants are inherently and evolutionarily aligned with
circadian rhythms and changing environmental conditions [3,4]. Zhou et al. [5] explained
that the emergence of the Internet of Things and the digital revolution has led to the
rapid collection and transfer of huge amounts of data in real-time. This phenomenon,
often referred to as “big data”, can greatly impact various aspects of the food industry,
which is directly and indirectly related to the plant industry; the integration of big data
analytics with AI in the food industry and bioinformatics in agriculture enhances food safety,
optimizes resource use, and improves crop resilience by enabling real-time monitoring,
data-driven decision-making, and predictive analytics, thereby ensuring food security
and sustainable agricultural practices. On the flip side, abiotic stresses present significant
obstacles to sustainable agriculture, resulting in considerable reductions in crop yield
and quality [6–8]. Educational initiatives and capacity-building programs are essential for
equipping upcoming scientists and agricultural professionals with the skills and knowledge
needed for bioinformatics and AI applications [9]. Interdisciplinary collaboration and
knowledge transfer are critical for bridging the gap between biologists, computer scientists,
and agricultural experts, facilitating the integration of bioinformatics and AI in managing
abiotic stress [10]. Educational programs that develop a skilled workforce proficient in
bioinformatics tools, databases, and AI applications are vital for driving innovation and
addressing global food security challenges exacerbated by environmental pressures [11,12].
Significant expenses, laborious processes, and reductions in genetic diversity have hindered
the development of resistant crops. Additionally, the control of multiple traits by a single
gene and the unpredictable impact of environmental stimuli on signaling cascades have
made success elusive. To ensure global food security, a comprehensive approach that
includes omics techniques, speed breeding, and traditional crop development methods
capable of thriving in any environment is necessary. This multi-pronged approach will
pave the way for a future free from hunger [13–18].

To generate the literature for this review, a comprehensive search was conducted across
multiple scientific databases/search engines, including Google Scholar, PubMed, Web of
Science, and Scopus. The search strategy involved the use of specific keywords and phrases
related to the focus of this review. Keywords included “abiotic stress”, “crop improve-
ment”, “bioinformatics tools”, “artificial intelligence in agriculture”, “omics techniques”,
“transcriptomics”, “genomics”, “proteomics”, “phenomics”, “metabolomics”, “machine
learning”, and “deep learning”. Boolean operators such as AND, OR, and NOT were used
to refine the search results and ensure the inclusion of pertinent studies. Additionally, refer-
ence lists of selected papers were reviewed to identify further pertinent studies. Producing
plants and crops that can withstand stress conditions without significant yield penalties is
essential. In this context, the combination of bioinformatics tools and artificial intelligence
(AI) applications has emerged as a potent approach to addressing the complex problem
of abiotic stress management in crops [15]. The novelty of this review lies in its unique
integration of AI applications and bioinformatics tools, offering a holistic approach to en-
hancing the development of stress-resilient crops. This integration is crucial for advancing
sustainable agriculture and ensuring global food security amidst the growing challenges
posed by climate change. The search was limited to peer-reviewed English articles to
ensure the reliability of the data and quality. In total, over 300 papers were studied for this
review, carefully selected for their relevance and contribution to the understanding and
advancement of stress-resilient crop development and sustainable agricultural practices.
The objectives of this review are (i) to explore the synergistic integration of bioinformatics
tools and AI applications for managing abiotic stress in plants and crops, (ii) to discuss
the practical applications and benefits of this integration in enhancing crop resilience and
productivity, and (iii) to address the challenges and outline future prospects for leveraging
bioinformatics and AI in agricultural research. By focusing on these objectives, this review
seeks to offer a thorough understanding of how the convergence of bioinformatics and AI
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can accelerate the development of stress-resilient crops, optimize agricultural practices,
and ensure global food security under increasing environmental pressures.

2. Computational Biological Tools and Databases for Crop Improvement Research

Advances in molecular biology, genomics, and bioinformatics have generated massive
biological datasets that require sophisticated computational analyses to derive meaning-
ful insights [19–21]. Figure 1 illustrates the integration of various tools, techniques, and
approaches in plant and crop improvement programs. This integration is essential for
addressing complex biological questions related to abiotic stress, which often require multi-
faceted approaches for comprehensive understanding. Bioinformatics tools such as STRING
and KEGG can be utilized to map and analyze oxidative stress-related pathways, including
the accumulation of reactive oxygen species (ROS), which are crucial for understanding
stress signaling and tolerance mechanisms. These tools enable the identification of genes
and regulatory networks involved in ROS production and detoxification, highlighting their
roles in stress responses. Tools such as BLAST and ClustalW are foundational for a detailed
analysis of genome sequences through sequence alignment and comparison, which are
crucial for understanding the genetic basis of stress responses in plants. These analyses
help identify genes linked with stress tolerance and their regulatory mechanisms [22].
However, their effectiveness relies on the user’s familiarity with alignment algorithms and
command-line operations, so new researchers may benefit from simpler, guided interfaces
available in integrated platforms such as Ensembl Plants and PlantGDB, although they may
have limitations in advanced customization and performance of large-scale data. Bioinfor-
matics tools that integrate genetic and epigenetic data, such as EpiDiverse and MethGo [23],
enable researchers to explore how epigenetic modifications such as DNA methylation
and histone modifications interact with genetic variants. This combined approach helps
in identifying key regulatory elements that influence gene expression and plant stress
responses. Surrounding the central hub are components and methodologies, including
genomic analysis (GWAS, population genetics, and molecular breeding), genotyping tech-
nologies (SNP genotyping and NGS analysis), breeding strategies (multi-parent advanced
generation cross and genome selection), and statistical analyses. These elements form
a comprehensive framework for leveraging cutting-edge technologies and data-driven
approaches to develop stress-resistant and high-yielding crop varieties [24].

Bioinformatics is an interdisciplinary field that merges the elements of mathematics,
computer science, statistics, and life sciences, playing a vital role in managing, analyzing,
and interpreting large volumes of biological data. This field systematically develops and
applies computational tools for the purposes of data collection, mining, storage, database
searches, analyses, interpretation, modeling, and product design [25–27]. Its applications in
plant improvement are extensive, providing tools and technologies to support and assess
research, enabling complementary computational tools and database development, and
interpreting biological information to enhance the understanding of biological systems [28].
Powerful bioinformatics tools are available for structural, functional, and sequence analyses
and database construction [29], as well as facilitating genomic information-assisted crop
breeding and improvement programs, enabling the exploitation of vast genetic information
from sequencing projects to improve crop traits [30,31]. However, some researchers remain
unfamiliar with these tools, leading to potential misinterpretation and underutilization of
available data resources. Next-generation sequencing (NGS) tools enable swift sequencing
but introduce challenges in analyzing millions or billions of short DNA reads [32], neces-
sitating computational algorithms and software development for processing genotypes,
genetic maps, and gene expression data to extract biological insights [33]. User-friendly
interfaces provide access to outcomes generated by these algorithms through websites,
databases, and software tools (Table 1). The Omics era has advanced plant system under-
standing through tools such as genomics, proteomics, transcriptomics, and metabolomics,
with data integration across these levels offering a holistic view of molecular interactions
leading plant responses to abiotic stress [34].
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Table 1. Bioinformatics databases for plant stress and crop improvement. Modified from [12,20,35–43].

Databases Features/Description/Function Website Links

AtMAD Provides omics data of Arabidopsis thaliana http://www.megabionet.org/atmad (accessed on
28 Feburary 2024)

GoMapMan Functional annotation of plant-related genes http://www.gomapman.org/ (accessed on
4 March 2024)

PGDBj Database for DNA markers and their linkage http://pgdbj.jp/en/index (accessed on
1 March 2024)

Phytozome A comparative genomics database for plants https://phytozome-next.jgi.doe.gov/ (accessed
on 3 March 2024)

PlantGDB
A genomics database that provides annotated
transcript assemblies for >100 plant
(Viridiplantae) species

http://www.plantgdb.org/ (accessed on
22 Feburary 2024)

PMRD Plant miRNA database http://bioinformatics.cau.edu.cn/PMRD/
(accessed on 5 March 2024)

SALAD Compares proteomic data across different species https://salad.dna.affrc.go.jp/salad/en/
(accessed on 8 March 2024)

FastQC Quality checks on raw sequence data coming from
high-throughput sequencing pipelines

https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/ (accessed on 28 Feburary 2024)

Bowtie2 Aligns sequencing reads in an ultrafast and
memory-efficient manner

http://bowtie-bio.sourceforge.net/bowtie2
/index.shtml (accessed on 28 Feburary 2024)

kngMap Aligns long reads to a reference sequence https://github.com/zhang134/kngMap
(accessed on 2 March 2024)

MOSAIK Maps 2nd- and 3rd-generation sequencing reads https://github.com/wanpinglee/MOSAIK
(accessed on 1 March 2024)

Novoalign Maps short reads onto a reference genome from
different NGS platforms

http://www.novocraft.com/products/novoalign/
(accessed on 29 Feburary 2024)

http://www.megabionet.org/atmad
http://www.gomapman.org/
http://pgdbj.jp/en/index
https://phytozome-next.jgi.doe.gov/
http://www.plantgdb.org/
http://bioinformatics.cau.edu.cn/PMRD/
https://salad.dna.affrc.go.jp/salad/en/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/zhang134/kngMap
https://github.com/wanpinglee/MOSAIK
http://www.novocraft.com/products/novoalign/
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Table 1. Cont.

Databases Features/Description/Function Website Links

SOAP3-dp
First short-read alignment tool that leverages the
multiprocessors in a graphic processing unit (GPU)
to achieve a drastic improvement in speed.

http://soap.genomics.org.cn/ (accessed on
3 March 2024)

Minimap2 Accurate and efficient for long, noisy RNA and
genomic sequences

https://github.com/lh3/minimap2 (accessed on
26 March 2024)

GATK
Bioinformatics tool set for analyzing
high-throughput sequencing and variant call
format data

https://software.broadinstitute.org/gatk/
(accessed on 26 Feburary 2024)

Freebayes Excels at calling haplotype-based variants from
a population

https://github.com/ekg/freebayes (accessed on
2 March 2024)

Platypus A haplotype-based variant caller

https://www.rdm.ox.ac.uk/research/lunter-group/
lunter-group/platypus-a-haplotype-based-variant-
caller-for-next-generation-sequence-data (accessed
on 6 March 2024)

IGV A tool for high-performance interactive exploration
of large, integrated genomic datasets https://igv.org/ (accessed on 26 Feburary 2024)

VISTA
Utilizes global alignment strategies and a
curve-based visualization technique and is also
used for comparative analysis

https://genome.lbl.gov/vista/index.shtml
(accessed on 2 March 2024)

R software Gosling: A grammar for scalable and interactive
visualization of genomic data

http://gosling-lang.org/ (accessed on
4 March 2024)

GET_HOMOLOGUES-
EST

A highly customized and automated pipeline
specifically designed for individuals with a
non-bioinformatics background

https://github.com/eead-csic-compbio/get_
homologues/releases (accessed on 4 March 2024)

PAN2HGENE
Computational tool that allows identification of
gene products missing from the original
genome sequence

https://sourceforge.net/projects/pan2hgene-
software/ (accessed on 28 Feburary 2024)

Pantools A versatile tool for mapping metagenomic and
genomic reads in both prokaryotes and eukaryotes

https://git.wur.nl/bioinformatics/pantools
(accessed on 2 March 2024)

PanViz An interactive visualization tool for comparing
individual genomes to the pangenome

https://github.com/thomasp85/PanViz/blob/
master/package.json (accessed on
26 Feburary 2024)

ppsPCP Detects presence-absence variations and assembles
a comprehensive pangenome

http://cbi.hzau.edu.cn/ppsPCP/ (accessed on
1 March 2024)

RPAN A rich source for rice genomic research
and breeding

https://cgm.sjtu.edu.cn/3kricedb/ (accessed on
1 March 2024)

Hap10 A novel algorithm for haplotype assembly of
polyploid genomes using linked reads

https://sourceforge.net/projects/sdhap/
(accessed on 8 March 2024)

HapCut2 Provides robust and accurate haplotype assembly
for various sequencing technologies

https://github.com/vibansal/HapCUT2
(accessed on 23 Feburary 2024)

HaploConduct A package designed for the reconstruction of
individual haplotypes

https://github.com/HaploConduct/HaploConduct
(accessed on 8 March 2024)

HAPLOVIEW Analysis and visualization of linkage
disequilibrium (LD) and haplotype maps

https://www.broadinstitute.org/haploview/
haploview (accessed on 6 March 2024)

HapTree Provides a polyploid haplotype assembly tool
based on a statistical framework

http://cb.csail.mit.edu/cb/haptree/ (accessed on
27 Feburary 2024)

BFCounter A program for counting k-mers in DNA
sequence data

http://pritch.bsd.uchicago.edu/bfcounter.html
(accessed on 2 March 2024)

iMOKA Utilizes a fast and accurate feature reduction step https://github.com/RitchieLabIGH/iMOKA
(accessed on 3 March 2024)

KAT
A multi-purpose software toolkit for reference-free
quality control (QC) of whole-genome sequencing
(WGS) reads and de novo genome assemblies

https://github.com/TGAC/KAT (accessed on
28 Feburary 2024)

KITSUNE Identifies the optimal k-mer length for
alignment-free phylogenomic analysis

https://github.com/natapol/kitsune (accessed
on 5 March 2024)

KmerGO Identifies group-specific sequences using k-mers https://github.com/ChnMasterOG/KmerGO
(accessed on 3 March 2024)

http://soap.genomics.org.cn/
https://github.com/lh3/minimap2
https://software.broadinstitute.org/gatk/
https://github.com/ekg/freebayes
https://www.rdm.ox.ac.uk/research/lunter-group/lunter-group/platypus-a-haplotype-based-variant-caller-for-next-generation-sequence-data
https://www.rdm.ox.ac.uk/research/lunter-group/lunter-group/platypus-a-haplotype-based-variant-caller-for-next-generation-sequence-data
https://www.rdm.ox.ac.uk/research/lunter-group/lunter-group/platypus-a-haplotype-based-variant-caller-for-next-generation-sequence-data
https://igv.org/
https://genome.lbl.gov/vista/index.shtml
http://gosling-lang.org/
https://github.com/eead-csic-compbio/get_homologues/releases
https://github.com/eead-csic-compbio/get_homologues/releases
https://sourceforge.net/projects/pan2hgene-software/
https://sourceforge.net/projects/pan2hgene-software/
https://git.wur.nl/bioinformatics/pantools
https://github.com/thomasp85/PanViz/blob/master/package.json
https://github.com/thomasp85/PanViz/blob/master/package.json
http://cbi.hzau.edu.cn/ppsPCP/
https://cgm.sjtu.edu.cn/3kricedb/
https://sourceforge.net/projects/sdhap/
https://github.com/vibansal/HapCUT2
https://github.com/HaploConduct/HaploConduct
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
http://cb.csail.mit.edu/cb/haptree/
http://pritch.bsd.uchicago.edu/bfcounter.html
https://github.com/RitchieLabIGH/iMOKA
https://github.com/TGAC/KAT
https://github.com/natapol/kitsune
https://github.com/ChnMasterOG/KmerGO
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Table 1. Cont.

Databases Features/Description/Function Website Links

CHOPCHOP

A web-based tool for selecting target sites for
CRISPR/Cas9- or TALEN-directed mutagenesis
(generating primers and displaying the
chromosomal site)

https://chopchop.cbu.uib.no/ (accessed on
26 Feburary 2024)

CLD Suitable for designing libraries using modified
CRISPR enzymes and targeting non-coding regions

https://github.com/boutroslab/cld (accessed on
3 March 2024)

CRISPETa Designs optimal pairs of sgRNAs for the deletion of
desired genomic regions

http://crispeta.crg.eu/ (accessed on
3 March 2024)

CROPSR Highly effective and efficient for designing gRNA
in crops

https://github.com/H2muller/CROPSR
(accessed on 2 March 2024)

BioNIX

Integrates the output of several programs,
including BLAST, FEX, FGENE, GRAIL,
GENEFINDER, HEXON, MZEF, POLYAH,
REPEATMASKER, and TRNASCAN

https://en.wikipedia.org/wiki/List_of_gene_
prediction_software#cite_note-37 (accessed on
27 Feburary 2024)

IntFOLD

A unified interface used for tertiary structure
prediction/3D modeling, 3D model quality
assessment, intrinsic disorder prediction, domain
prediction, and prediction of protein–ligand
binding residues

http://www.reading.ac.uk/bioinf/IntFOLD/
(accessed on 9 March 2024)

RaptorX Performs protein 3D modeling, distant homology
discovery, and binding site prediction

http://raptorx.uchicago.edu/ (accessed on
24 Feburary 2024)

ESyPred3D Recognizes templates, aligns sequences, and
performs 3D modeling

http://www.fundp.ac.be/urbm/bioin (accessed
on 4 March 2024)

FoldX Designs protein and performs energy calculations http://foldx.crg.es/ (accessed on 4 March 2024)

Phyre and Phyre2
Used for remote template identification, alignment,
3D modeling, multi-template modeling, and ab
initio studies

http://www.sbg.bio.ic.ac.uk/~phyre/ (accessed
on 3 March 2024)

HHpred Assists in template recognition, alignment, and
3D modeling

http://arquivo.pt/wayback/20160514083149
/http://toolkit.tuebingen.mpg.de/hhpred
(accessed on 3 March 2024)

MODELLER Satisfies spatial restraints for protein
structure modeling

https://salilab.org/modeller/ (accessed on
7 March 2024)

CAN FOLD Satisfies contact and distance constraints for
protein folding

https://github.com/multicom-toolbox/CONFOLD
(accessed on 28 Feburary 2024)

MOE (Molecular
Operating
Environment)

Performs loop modeling, utilizes rotamer libraries
for sidechain conformations and MM forcefields,
identifies templates, uses multiple templates, and
accounts for additional environments
(e.g., excluded ligand volumes)

http://www.chemcomp.com/ (accessed on
2 March 2024)

ROBETTA Uses Rosetta homology modeling and fragment
assembly for Ginzu domain prediction

http://robetta.bakerlab.org/ (accessed on
1 March 2024)

BHAGEERATH-H
Predicts protein tertiary structure by combining
methods of ab initio folding and
homology modeling

http://www.scfbio-iitd.res.in/bhageerath/
bhageerath_h.jsp (accessed on 4 March 2024)

SWISS-MODEL Performs local similarity/fragment assembly for
protein structure prediction

http://swissmodel.expasy.org/ (accessed on
29 Feburary 2024)

Yasara

Performs ligand and oligomer modeling, template
detection, alignment, and model fragment
hybridization, and can be used in text mode
(clusters) or with a graphical user interface

http://www.yasara.org/ (accessed on
2 March 2024) http://www.yasara.org/casp8.htm
(accessed on 1 March 2024)

AWSEM-Suite
Uses molecular dynamics simulation to understand
co-evolutionarily history, template-guided, and
optimized folding landscapes

http://awsem.rice.edu/ (accessed on
28 Feburary 2024)

Gramene
With a user-friendly interface, allows users to filter
and export attributes related to species, germplasm,
name/synonym, library/source and more.

http://www.gramene.org/ (accessed on
5 March 2024)

https://chopchop.cbu.uib.no/
https://github.com/boutroslab/cld
http://crispeta.crg.eu/
https://github.com/H2muller/CROPSR
https://en.wikipedia.org/wiki/List_of_gene_prediction_software#cite_note-37
https://en.wikipedia.org/wiki/List_of_gene_prediction_software#cite_note-37
http://www.reading.ac.uk/bioinf/IntFOLD/
http://raptorx.uchicago.edu/
http://www.fundp.ac.be/urbm/bioin
http://foldx.crg.es/
http://www.sbg.bio.ic.ac.uk/~phyre/
http://arquivo.pt/wayback/20160514083149/http://toolkit.tuebingen.mpg.de/hhpred
http://arquivo.pt/wayback/20160514083149/http://toolkit.tuebingen.mpg.de/hhpred
https://salilab.org/modeller/
https://github.com/multicom-toolbox/CONFOLD
http://www.chemcomp.com/
http://robetta.bakerlab.org/
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
http://swissmodel.expasy.org/
http://www.yasara.org/
http://www.yasara.org/casp8.htm
http://awsem.rice.edu/
http://www.gramene.org/
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Table 1. Cont.

Databases Features/Description/Function Website Links

EnsemblPlants
Provides annotation, alignment, and visualization
of plant genomes from biodiversity initiatives
and collaborations

http://plants.ensembl.org/ (accessed on
1 March 2024)

MapGene2Chromosome Analyzes the heredity of gene families and
performs map-based gene cloning

http://mg2c.iask.in/mg2c_v2.0/ (accessed on
26 Feburary 2024)

MapChart Produces charts of genetic linkage maps and
QTL data

https://www.mapchart.net/ (accessed on
1 March 2024)

GSDS 2.0 Assists in visualizing annotated gene features and
generating high-quality figures for publication

https://gsds.gao-lab.org/Gsds_help.php
(accessed on 3 March 2024)

IUPred
Provides a combined web interface that identifies
disordered protein regions using IUPred2 and
disordered binding regions using ANCHOR2

https://iupred2a.elte.hu/ (accessed on
4 March 2024)

DESeq2 A fundamental task in RNA-seq count data analysis
is detecting differentially expressed genes

https://bioconductor.org/packages/release/
bioc/html/ (accessed on 26 Feburary 2024)

StringTie

Employs efficient algorithms to reconstruct
transcript structures and estimate expression levels
from bulk RNA-Seq reads aligned to a
reference genome

https://ccb.jhu.edu/software/stringtie/
(accessed on 3 March 2024)

PLEXdb

A unified plant and associated pathogens gene
expression resource that serves as a
genotype-to-phenotype, hypothesis-building
information warehouse. It leverages highly parallel
expression data and provides access to pertinent
genetic, physical, and pathway data

https://www.plexdb.org/ (accessed on
28 Feburary 2024)

PlantGenIE

A comprehensive web resource designed for
searching, visualizing, and analyzing genomics as
well as transcriptomics data across multiple
plant species

http://www.plantgenie.org/ (accessed on
7 March 2024)

TAIR A genetic and molecular biology database
dedicated to A. thaliana

https://www.arabidopsis.org/ (accessed on
23 Feburary 2024)

MaizeGDB
Functions as a community-focused, long-term
informatics resource tailored for researchers
studying Zea mays

https://www.maizegdb.org/ (accessed on
2 March 2024)

Genevestigator A tool for exploring public and private gene
expression data from bulk tissue to single cells

https://genevestigator.com/ (accessed on
28 Feburary 2024)

MetaboAnalyst
Offers various modules for statistical, biomarker,
pathway, network, and functional analysis of
metabolomics data

https://www.metaboanalyst.ca/ (accessed on
4 March 2024)

XCMS
A framework designed for the processing and
visualization of chromatographically separated and
single-spectra mass spectral data

https://xcmsonline.scripps.edu/landing_page.
php?pgcontent=mainPage (accessed on
4 March 2024)

MetaboLights
A cross-species, cross-technique database that
encompasses metabolite structures, spectra, roles,
locations, concentrations, and experimental data

https://www.ebi.ac.uk/metabolights/ (accessed
on 3 March 2024)

PMN Provides statistics on pathways, enzymes, reactions,
and compounds, along with detailed descriptions

http://plantcyc.org/ (accessed on
27 Feburary 2024)

MassBank
A metadata-centric, auto-curating repository
designed for efficient storage and querying of mass
spectral data

https://massbank.eu/MassBank/ (accessed on
2 March 2024)

PlantCyc Multi-species reference database of plant metabolic
pathways in over 500 species

http://pmn.plantcyc.org/ (accessed on
27 Feburary 2024)

Golm Metabolome
Database

Enables the search and distribution of mass spectra
for biologically active metabolites quantified
through Gas chromatography–mass
spectrometry (GC–MS)

http://gmd.mpimp-golm.mpg.de/ (accessed on
3 March 2024)

COLOMBOS
Offers extensive organism-specific cross-platform
gene expression datasets for various bacterial
model organisms

http://colombos.net/ (accessed on 4 March 2024)

http://plants.ensembl.org/
http://mg2c.iask.in/mg2c_v2.0/
https://www.mapchart.net/
https://gsds.gao-lab.org/Gsds_help.php
https://iupred2a.elte.hu/
https://bioconductor.org/packages/release/bioc/html/
https://bioconductor.org/packages/release/bioc/html/
https://ccb.jhu.edu/software/stringtie/
https://www.plexdb.org/
http://www.plantgenie.org/
https://www.arabidopsis.org/
https://www.maizegdb.org/
https://genevestigator.com/
https://www.metaboanalyst.ca/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.ebi.ac.uk/metabolights/
http://plantcyc.org/
https://massbank.eu/MassBank/
http://pmn.plantcyc.org/
http://gmd.mpimp-golm.mpg.de/
http://colombos.net/
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Table 1. Cont.

Databases Features/Description/Function Website Links

OmicsNet Facilitates the interpretation of multi-omics
signatures through biological networks

http://www.omicsnet.ca/ (accessed on
29 Feburary 2024)

OmicsDI
Open-source platform that integrates and
disseminates omics datasets from various resources
and studies

https://www.omicsdi.org/ (accessed on
5 March 2024)

OMICTools Provides a comprehensive list of tools and
databases for genomics applications

https://omictools.com/ (accessed on
5 March 2024)

Panorama
A server-based data repository application for
targeted mass spectrometry assays that integrates
with the Skyline mass spec workflow

https://panoramaweb.org/ (accessed on
28 Feburary 2024)

CRISPR
RGEN Tools

Offers standalone, downloadable predictive models
that efficiently forecast potential off-target numbers
in CRISPR applications

https://www.rgenome.net/Cas-designer
(accessed on 3 March 2024)

CRISPRscan
Generates tracks for genome browsers, designs
sgRNAs for specific gene sites, and scans the entire
genome for off-target effects

https://www.crisprscan.org/ (accessed on
27 Feburary 2024)

CCTop Identifies mismatches, forecasts off-target effects,
and predicts sgRNA efficiency

https://cctop.cos.uni-heidelberg.de:8043/
(accessed on 4 March 2024)

CRISTA Provides a framework for ML, identifies off-targets,
and evaluates targets

https://crista.tau.ac.il/ (accessed on
1 March 2024)

CRISPR-GE Creates vectors and designs primers for
on-target amplification

https://skl.scau.edu.cn/ (accessed on
1 March 2024)

CRISPR-P Analyzes gRNA sequences and performs on-target
and off-target screening

https://crispr.hzau.edu.cn/CRISPR2/ (accessed
on 29 Feburary 2024)

CRSeek Locates both on- and off-target websites https://github.com/DamLabResources/crseek
(accessed on 2 March 2024)

CRISPResso Potential is found for both on- and off-targets http://github.com/lucapinello/CRISPResso
(accessed on 28 Feburary 2024)

Cas-OFFinder
Identifies potential off-target sites and provides
detailed information about their locations,
orientations, and the number of mismatches

http://www.rgenome.net/cas-offinder/
(accessed on 1 March 2024)

CasOT
Identifies potential off-target locations based on
user-specified PAM types, mismatch rates,
and genomes

http://eendb.zfgenetics.org/Casot/ (accessed on
28 Feburary 2024)

CRISPRitz
Enumerates, annotates, and assesses the potential
implications of putative off-target sequences on the
functioning genome

https://github.com/pinellolab/CRISPRitz
(accessed on 1 March 2024)

CRISPRloci
Defines the CRISPR leaders for each locus, predicts
the direction of each CRISPR array, and annotates
Cas9 genes

https://rna.informatik.uni-freiburg.de (accessed
on 28 Feburary 2024)

CRISPRdigger
Enhances the accuracy of a query genome by
detecting CRISPRs with improved direct
repeat annotations

http://www.healthinformaticslab.org/supp/
(accessed on 2 March 2024)

BATCH-GE
Identifies and documents precise genome editing
events, such as indel mutations, and estimates the
associated mutagenesis efficiencies

https://github.com/WouterSteyaert/BATCH-GE.git
(accessed on 1 March 2024)

CRISPR Plant
v2 For extremely specialized sgRNAs https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6330547/ (accessed on 1 March 2024)

CrisprGE A central repository for CRISPR/Cas9-based
genome editing data

http://crdd.osdd.net/servers/crisprge/
(accessed on 29 Feburary 2024)

2.1. Genomics

Plants’ molecular response to stress encompasses complex interactions among genetic,
transport, and metabolic processes [44–46]. High-throughput sequencing technologies rev-
olutionized plant genomics, enabling budget-friendly and fast generation of extensive ge-
netic data [47]. In managing abiotic stress, genomic approaches identified stress-responsive
genes (SRGs), elucidated regulatory networks, and developed molecular markers for

http://www.omicsnet.ca/
https://www.omicsdi.org/
https://omictools.com/
https://panoramaweb.org/
https://www.rgenome.net/Cas-designer
https://www.crisprscan.org/
https://cctop.cos.uni-heidelberg.de:8043/
https://crista.tau.ac.il/
https://skl.scau.edu.cn/
https://crispr.hzau.edu.cn/CRISPR2/
https://github.com/DamLabResources/crseek
http://github.com/lucapinello/CRISPResso
http://www.rgenome.net/cas-offinder/
http://eendb.zfgenetics.org/Casot/
https://github.com/pinellolab/CRISPRitz
https://rna.informatik.uni-freiburg.de
http://www.healthinformaticslab.org/supp/
https://github.com/WouterSteyaert/BATCH-GE.git
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330547/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330547/
http://crdd.osdd.net/servers/crisprge/
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breeding programs [16]. At the genomic level, transcription factors, chromatin structure,
and cis-regulatory DNA sequences primarily regulate plant stress [48]. Databases and
computational tools play a crucial role in various aspects of sequence analysis, such as
identifying orthologous genes, determining gene functions, phylogenetic analysis, map-
ping chromosomal location, studying introns, identifying cis-regulatory elements, and
analyzing 5′ and 3′ untranslated regions [49]. Databases such as Gramene, Phytozome,
Ensembl Plants, PlantGDB, and VISTA offer interfaces that are user-friendly and assist in
retrieving plant genes/orthologous sequences, while databases such as riceDB, SoyBase,
TAIR, and MaizeGDB provide valuable resources that are plant species-specific [49]. Tools
such as MapGene2Chromosome v2, MapChart, GSDS 2.0, PIECE, IUPred, ProtParam,
Tbtools, and PlantCARE aid in gene mapping, structure analysis, gene–gene interactions,
and cis-regulatory element identification. Moreover, QTL genomics, pangenomics, struc-
tural genomics, comparative genomics, epigenomics, genome editing, synthetic genomics,
phylogenomics, functional annotation, and genome-wide association studies (GWAS) con-
tribute to a thorough understanding of genetic information and its applications [50,51].
GWAS has been crucial in identifying genetic variants associated with abiotic stress tol-
erance in crops [52]. Genomic tools not only identify genetic variations linked to stress
tolerance but also, when combined with epigenomic data, provide insights into how epi-
genetic modifications regulate gene expression under stress conditions. For instance, the
integration of GWAS data with DNA methylation patterns can reveal how epigenetic marks
influence the expression of stress-responsive genes, thereby offering a more nuanced under-
standing of plant resilience [53,54]. These discoveries can create marker-assisted selection
techniques for breeding stress-tolerant crop varieties. By exploring plant life’s intricacies,
these genomics branches provide valuable insights, driving progress in agriculture, ecology,
and biotechnology [12].

2.2. Transcriptomics

Transcriptomics is the study of the entire set of RNA transcripts in specific cells or
tissues under different conditions, providing insights into gene expression patterns, alterna-
tive splicing, and post-transcriptional modifications, which helps researchers understand
the underlying molecular mechanisms, often revealing how plants regulate gene expres-
sion in response to oxidative stress, including genes involved in ROS production and
scavenging [55]. For instance, Adil et al. [56] and Sehar et al. [57] conducted a transcrip-
tomics study to investigate gene expression patterns in rice plants exposed to heavy metals
(i.e., cadmium and arsenic), identifying key genes and regulatory pathways involved
in stress responses. Commonly used tools and databases for plants include Cufflinks,
which is used for transcript assembly, quantification, and differential expression analysis
from RNA-Seq data, widely applied in crops such as Arabidopsis and rice [58]; DESeq2,
commonly used in maize and wheat, aids in differential gene expression analysis (both
DESeq2 and Cufflinks can help identify differentially expressed genes related to oxidative
stress responses, providing insights into the plant’s ability to manage ROS accumulation
under various abiotic stresses) [59]; TopHat maps RNA-Seq reads to reference genomes
and identifies splice junctions in soybean and barley [58]; StringTie facilitates transcript
assembly and quantification in tomatoes. Plant Expression Database, PlantGenIE [60],
Arabidopsis Information Resource [61], RiceXPro [62], MaizeGDB [63], and Genevestiga-
tor [64] are valuable resources for transcriptomics data and analysis across various plant
species, including Arabidopsis, rice, maize, soybean, barley, tomato, and poplar. Tran-
scriptomics tools such as DESeq2 and StringTie are powerful for differential expression
analysis and transcript assembly but come with high computational requirements and steep
learning curves. These challenges can be daunting for new researchers without extensive
bioinformatics training. Conversely, platforms such as the Arabidopsis Information Resource
(TAIR) and PlantGenIE provide more user-friendly interfaces, allowing beginners to ex-
plore transcriptomics data with less technical overhead, although they may not offer the
same depth of analysis as command-line tools. Additionally, specialized omics disciplines
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such as epitranscriptomics in rice [65], non-coding RNA transcriptomics in Arabidopsis [66],
single-cell transcriptomics in maize [67], and spatial transcriptomics in wheat [68] offer
detailed insights into the dynamic nature of gene expression and RNA regulation. Com-
bining genomic and transcriptomic data has significantly improved our knowledge of the
intricate regulatory networks responsible for plant responses to abiotic stress. By merging
information on genetic variation, gene expression, and regulatory elements, scientists can
create more inclusive models of stress signaling and acclimation pathways, leading towards
the development of stress-resistant crops through genetic engineering.

2.3. Proteomics

By studying alterations in gene expression and proteome profiles, the adaptive strate-
gies employed by plants at both the cellular and metabolic levels can be determined [69,70].
For example, Wu et al. [71] utilized TMT-based quantitative proteomics to examine the alter-
ations in water loss and cell wall metabolism during the postharvest withering of tobacco
foliage, identifying key proteins involved in various metabolic pathways and underscoring
the importance of cell wall metabolism and dehydration. Similarly, another study by Wu
et al. [72] employed iTRAQ-based proteomics to investigate the molecular mechanisms
behind pigment metabolism and tobacco leaf color changes during curing, identifying
key proteins associated with carotenoid/chlorophyll metabolism. Feng et al. [73] utilized
TMT-based proteomics to investigate proteome dynamics in plants under various abi-
otic stresses, identifying critical proteins and pathways that contribute to stress tolerance.
Sagonda et al. [74] also employed iTRAQ-based proteomics to investigate protein expres-
sion profiles under abiotic stress, shedding light on the molecular mechanisms behind plant
stress responses. In fact, to decode the complex proteomic details of plant stress responses,
the scientific community has created specialized bioinformatics resources that aggregate
data from various “-omics” studies, thus allowing efficient data mining and collaborative
research [75,76]. Several valuable resources and databases (such as UniProtKB/Swiss-Prot,
Plant Proteome Database, Araport, etc.) support plant proteomics research [77–79]. More-
over, PRIDE Database and Massive serve as repositories for mass spectrometry-oriented
proteomics data, including plant-based experiments [80]. ProteomeXchange enables the
distribution of proteomics data through multiple repositories [81]. Plant PTM Viewer aids
in the exploration and visualization of post-translational protein modifications [82], while
SUBA4 offers data on the subcellular localization of Arabidopsis proteins, aiding spatial pro-
teomics investigations [83]. While there is a plethora of bioinformatics tools and databases
available for plant research, their effective utilization often requires specialized training
and knowledge. Proteomics databases such as UniProtKB/Swiss-Prot and the Plant Pro-
teome Database offer comprehensive resources for protein data; however, they require
users to navigate complex datasets and understand advanced proteomic concepts. User-
friendly tools such as Plant PTM Viewer can help beginners visualize post-translational
modifications without needing extensive background knowledge, although they might lack
advanced data manipulation capabilities found in more specialized software. Therefore,
user-friendly interfaces, online training resources, and educational platforms can facilitate
the accessibility and understanding of these tools and databases for researchers, students,
and professionals [35]. Interactive tutorials, video demonstrations, and step-by-step guides
can aid in adopting and proficiently using bioinformatics resources, enabling seamless data
analysis and interpretation [84]. Furthermore, the development of dedicated educational
modules and workshops can provide hands-on training and foster a deeper understanding
of the capabilities and applications of these tools in the context of abiotic stress manage-
ment in plants and crops. Continuous progress has laid the groundwork for innovative
techniques, which hold significant potential for tackling core biological inquiries [85]. One
such example is spatial proteomics, which uses subcellular fractionation and purification
methods. These techniques have significantly advanced our comprehension of specific
proteomic activities within distinct plant organs and processes. This subdiscipline has been
instrumental in uncovering the complex spatial patterns of proteins under abiotic stress
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conditions. Consequently, it has deepened our understanding of plant stress adaptation
mechanisms [86].

2.4. Metabolomics

Metabolomics is a vital approach for studying complete metabolites/biochemical
pathways in biological samples. For instance, Sehar et al. [87] conducted a metabolomics
study to explore the metabolic changes in plants under heavy metal stress, providing
detailed insights into the metabolic pathways and roles of specific metabolites in stress
responses. Several tools and databases facilitate the analysis of such data, including
MetaboAnalyst for data pre-processing, statistical analysis, pathway analysis, and visual-
ization [88], XCMS for detecting, quantifying, and aligning metabolites [89], MetaboLights
for sharing and integrating metabolomics data [90], Plant Metabolic Network for enzyme
information, curated pathway databases, and metabolite annotations, Kyoto Encyclopedia
of Genes and Genomes for integrating multi-omics data and providing metabolic pathway
information [91], MassBank for plant metabolite data [92], PlantCyc for curated pathway
information [93], Golm Metabolome Database for mass spectra, retention indices, and
plant metabolite information [94], and McCloud for mass spectrometry data and spectral
libraries [95]. Additionally, there are specialized omics disciplines such as lipidomics (lipid
analysis) [96] and glycomics (carbohydrate analysis) [97]. High-throughput proteomic and
metabolomic analyses involve the identification of stress-responsive proteins and metabo-
lites, their post-translational modifications, and their interactions, which are essential for
developing stress-tolerant crop varieties [98]. This multi-omics approach has enabled
the identification of important regulatory centers, clarifying stress signaling pathways,
and the discovery of novel stress-tolerance mechanisms. Ultimately, this contributes to
developing better crop varieties [99]. Of note, tools such as MetaboAnalyst and XCMS
provide detailed analysis capabilities for complex datasets but require a considerable level
of expertise in data processing and interpretation. For novice users, starting with tools that
offer guided workflows or simplified data inputs, such as KEGG for pathway analysis, can
help bridge the gap, although these tools may not always provide the depth required for
cutting-edge research.

3. Integrated Omics and Its Role in Addressing Crop Abiotic Stress

To comprehensively understand complex plant processes, integrating data from ge-
nomics, transcriptomics, proteomics, and metabolomics using bioinformatics and AI algo-
rithms could prove to be useful [100,101]. A variety of tools and databases are available
to aid in this regard; for example, COLOMBOS compares and visualizes multi-omics data
from diverse plant experiments, facilitating cross-platform analysis and the exploration
of co-regulated genes and functional modules [12,102]. Of note, OmicsDI integrates data
from multiple omics studies, allowing researchers to explore and access publicly available
datasets [103]. OMICTools offers a curated collection of databases and software tools de-
signed for omics data analysis, supporting the integration of plant analysis and multi-omics
data [104]. Plant Metabolomics provides resources for the analysis of plant metabolomics
data, including databases, repositories, and tools for metabolite profiling [105]. Panorama
is a cloud-based platform that offers data analysis and visualization tools for collaborative
plant omics research [106,107]. Genome editing technology utilizes specific enzymes to
induce targeted genetic alterations by creating DNA double-strand breaks [108], including
meganucleases (MNs), zinc-finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs), and the CRISPR/Cas9 system [109]. MNs are naturally occurring
enzymes that recognize long DNA targets (12–40 base pairs) and are encoded by introns
or mobile genomic elements [110]. ZFNs and TALENs are engineered nucleases; ZFNs
consist of a zinc-finger protein that binds DNA and a FokI endonuclease domain [111],
while TALENs have a DNA-binding TALE domain and a FokI cleavage domain [112].
CRISPR/Cas9-mediated gene editing is revolutionizing the development of abiotic stress-
tolerant crops. This technology allows targeted mutagenesis, gene knockouts, alterations,



Sustainability 2024, 16, 7651 12 of 26

activation, and repression in various agricultural plants, including cereals, enhancing the
ability of plants to withstand adverse environmental conditions [113]. Compared to ZFNs
and TALENs, the CRISPR/Cas9 system is more cost-effective, efficient, and adaptable, mak-
ing it the preferred genetic engineering strategy for creating superior crop varieties with
improved yields under biotic or abiotic stress [114–117]. Data conversion into quantifiable
measurements, computational analysis, and trait identification are the steps through which
multi-dimensional crop traits from cellular to field levels are systematically acquired and
analyzed by plant phenomics [118–121]. Crop production faces significant challenges due
to abiotic stresses such as drought, salinity, and nutrient deficiencies, necessitating stress
resistance phenotyping [122]. Ground-based platforms equipped with thermometer sensors
and RGB cameras can be used to evaluate drought stress, while unmanned aerial vehicles
with thermal cameras allow for rapid scanning of larger areas to identify resistant geno-
types [123]. Salinity stress, impacting stomatal conductance, can be detected using visible to
near-infrared spectral reflectance images and tools such as Scanalyzer3D to study tolerance
mechanisms. Assessing tissue ion concentrations using RGB, fluorescence imaging, and hy-
perspectral imaging combined with ML can determine salinity tolerance [20,124]. Nitrogen
deficiencies, which impact chlorophyll content, growth, and disease susceptibility in crops,
are monitored using RGB, multispectral, and hyperspectral sensors. Mobile platforms
integrating these sensors are used to efficiently estimate N content [125,126].

4. AI-Assisted Techniques for Abiotic Stress Management and Applications of AI in
Crop Stress Biology

AI and ML are revolutionizing plant research and crop resilience and addressing
agricultural/food security challenges [120]. Deep learning (DL), a machine learning special-
ization, trains artificial neural networks (ANNs), mimicking the brain’s layered structure for
automatic feature extraction [121]. Self-supervised DL models such as ESM-2, DNABERT-2,
and MSA Transformer can extract novel insights on protein/DNA structure, function, and
evolution without labeled data [122]. ESM-2 self-learns protein sequence properties by
masking and predicting masked regions [123], and NetGO3 uses ESM for state-of-the-art
gene ontology prediction from sequences [124]. The initial ML phase involves data collec-
tion, e.g., RNA sequencing (Figure 2) [20], and de-noising enhances expression recovery.
Supervised ML uses diverse features such as amino acid sequences and physicochemical
properties for training data representation [41]. Feature selection is crucial, with three
methods: filter, wrapper, and embedding [42,43,127]. Algorithm selection is fundamental
in ML, categorized into supervised (establishing input–output relationships from training
data), unsupervised (identifying data patterns without known outcomes, e.g., clustering
and dimension reduction) [128,129], and semi-supervised (handling labeled and unlabeled
data) [130]. Common supervised algorithms include Support Vector Machine (SVM), Deci-
sion Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and Naïve Bayes
(NB) [131], while k-means, ICA, and hierarchical clustering are unsupervised [132]. PCA
reduces high-dimensional data to fewer uncorrelated PCs [133,134]. AlphaFold2 and confor-
mational subsampling provide structural insights into plant stress protein interactions [135].
The latest work enables ab initio 3D ligand structure prediction in proteins for de novo
molecule design [136]. AI advances include protein design via diffusion models [137] and
protein interaction prediction driven by high-throughput data, hardware, and powerful
methods [138]. However, AI techniques, including machine learning models such as SVM
and neural networks, often demand significant expertise in algorithm development and
data science. For beginners, AI platforms with pre-built models and intuitive interfaces,
such as DeepAProt and ASRpro, offer a more accessible entry point into AI applications,
although these may not provide the flexibility required for fully customized analyses.
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5. Major Deep Learning Architectures

Machine learning is widely popular, with DL and ANN architectures gaining attention.
Deep learning autonomously processes raw data, identifying complex patterns without
requiring extensive domain knowledge, in contrast to traditional ML, which focuses on
discrete or continuous output predictions [139]. Artificial Neural Networks (ANNs) imitate
biological neurons, learning through synaptic connections [140]. Deep Neural Networks
(DNNs) have numerous hidden layers, Recurrent Neural Networks (RNNs) handle sequen-
tial data [141], Convolutional Neural Networks (CNNs) identify features without super-
vision [142], and Graph Convolutional Networks (GCNs) tackle complex problems [143].
Transformers with self-attention are used for natural language tasks [144]. Ensemble
classifiers combine multiple models [145]. Clustering methods such as k-means provide un-
supervised protein function prediction [146,147]. Understanding each algorithm’s strengths
and/or weaknesses is crucial before applying them to omics datasets.

6. Validation of ML Predictions in Crop Genomics

Machine learning predictions can be validated in plant genomics through cross-
validation and algorithm comparison. K-fold cross-validation involves randomly dividing
the training data into k subsets, using one for validation and the others for training [148,149].
Evaluation metrics derived from the confusion matrix include sensitivity, specificity, accu-
racy, precision, F1-score, and MCC [150]. The ROC curve, which plots the False Positive
Rate against the True Positive Rate, and the Area Under the Curve are used to measure per-
formance, with a higher AUC indicating better prediction accuracy [151]. Individual-based
models require context-oriented validation due to complex interaction structures [152,153],
which involves visual inspection, statistical comparison, expert input, and experimental
validation [154]. Pattern-oriented modeling verifies and validates functional-structural
plant models [155]. Ontology-based approaches ensure model accuracy [156]. O2PLS
integrates transcript and metabolite data for validation [157]. For plant omics ML models,
context specificity is crucial for improving agronomic traits and crop resilience. ML is
necessary for pathogen effector gene analysis and for integrating multi-omics data to recon-
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struct networks [158]. ML prediction validation in plant stress omics involves comparing
classical and ML phenotype predictions [159], enhancing interpretability by classifying
visual stress symptoms [160], standardizing assessments, and using imaging and ML for
data assimilation [161].

7. Why Is Machine Learning Preferred for Analyzing Plant-Omics Data
over Traditional Methods?

Machine learning, especially deep learning, is preferred over traditional methods for
analyzing large, complex plant omics data from high-throughput sequencing [162,163].
Unsupervised and semi-supervised machine learning algorithms accurately analyze plant
traits affected by genotype–environment interactions without requiring large, labeled
datasets [147,158]. Decision tree ensembles excel at genomic prediction and integrative
omics analysis [164–166], deciphering complex interactions such as pathogen effectors
and plant immunity [167]. In transcriptomics, ML enhances differentially expressed gene
identification [155], although non-linear models may need explainable AI for interpreta-
tion [167]. Integrating ML with biological knowledge aids in learning dynamics from large
datasets [168–170]. ML’s multivariate analysis proficiency enables biomarker discovery
and predictive modeling [171]. While integrating multi-omics data remains challenging
due to scaling issues [172], ML excels at feature selection, as shown in rice salt stress
analysis using PCA and LASSO [173]. ML allows phenotype forecasting, biomarker iden-
tification, pattern recognition in complex datasets, and scalability for large-scale omics,
driving its adoption due to its ability to address data intricacies, enable predictive model-
ing, facilitate exploratory analysis, and adapt to heterogeneous data [20]. In multi-omics
analysis, Gene Regulatory Network (GRN) construction is a primary goal. With limited
ChIP-seq data for transcription factor binding sites in plants, GRN inference heavily re-
lies on expression data [174]. Traditional correlation and mutual information methods
struggle with regulatory direction and temporal delays [175,176]. Probabilistic graphi-
cal models such as GENIST and JRmGRN improve this but require high spatiotemporal
resolution [177,178]. Machine learning has revolutionized GRN inference by integrating
multi-omics data [179,180]. Tools such as iDREM use hidden Markov models to reconstruct
temporal GRNs from transcriptomic, proteomic, and epigenomic data [181]. For single-cell
RNA-Seq, GRNBoost2 and SCENIC enable cell-specific GRN inference efficiently [182,183].
ML’s strengths in handling complex data, integrating diverse datasets, predictive modeling,
and exploratory analysis drive its adoption in plant omics [184].

8. AI Applications in Plant and Crop Omics for Combating Abiotic Stress

AI techniques, including ML and DL, are used to develop predictive models that can
simulate crop responses to various stress conditions. These models assist in identifying key
stress tolerance traits and optimizing breeding programs for stress-resistant crops [185].
AI-assisted omics techniques in plant defense research represent a state-of-the-art approach
that merges advanced molecular technologies with AI to gain deeper insights into plant
responses to stressors (Figure 3). These techniques enable the rapid identification of key
components in defense pathways, the discovery of biomarkers, and the detection of hid-
den patterns, enhancing our understanding of plant defense mechanisms. By integrating
multi-omics data sources, these methods provide a comprehensive perspective [186]. Ma-
chine learning algorithms are crucial in identifying stress resistance genes, which aids in
plant and crop improvement. For instance, Liang et al. [187] employed an SVM variant to
identify key genes in A. thaliana for drought resistance, while Shikha et al. [188] explained
the superiority of Bayes algorithms in identifying critical SNPs in maize. Furthermore,
Wang et al. [189] applied an SVM-based model to predict salt resistance genes in rice,
whereas Ravari et al. [190] used artificial neural networks to identify indices to predict
salt-tolerant varieties of Iranian wheat. Schwarz et al. [191] investigated the cis-regulatory
code governing iron deficiency response in Arabidopsis roots using ML. For plant disease
resistance, SVM variants have shown high accuracy in predicting resistance proteins [192].
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Machine learning also aids in predicting pathogen effector proteins, with EFFECTORP
being the first ML classifier for fungal effectors [193]. Despite the primary focus on resis-
tance genes, ML also shows promise in understanding susceptibility genes, significantly
impacting agricultural practices [194]. Opportunities to uncover cellular heterogeneity,
decode regulatory networks, and identify novel cell types arise from applying ML to plant
single-cell genomic data [166,195]. Methods such as SIMLR [196] and neural networks [197]
address challenges in single-cell RNA sequencing, providing reliable insights.
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Studies on miRNAs and lncRNAs have demonstrated their regulatory roles in stress
tolerance. Bioinformatics tools analyze the interactions between these RNAs and their
target genes, providing insights into stress adaptation mechanisms [198]. Regarding explor-
ing individual miRNA roles in A. thaliana plant stress responses, Asefpour Vakilian [199]
employed feature selection algorithms, where information theory-based feature selection
identified key miRNAs (miR-159, miR-169, miR-393, and miR-396) as significant contribu-
tors. Meng et al. [200] used supervised classification models to identify low-temperature
SRGs in plants. Interestingly, models trained solely on genome assembly features showed
only modest performance reductions compared to those using a wider range of data.
Although models trained on one plant species successfully predicted cold stress gene
responses in related species, multi-species models outperformed them in cross-species
prediction accuracy. Zhou et al. [93] found extensive transcript abundance changes in maize
genotypes subjected to high- or low-temperature stress through transcriptome profiling.
Motifs near SRGs’ transcription start sites (TSSs) were enriched. Predictive models leverag-
ing these motifs were able to predict gene expression responses, with increased accuracy,
particularly when focusing on un-methylated TSS-proximal motifs. Pradhan et al. [201]
employed ML to identify long non-coding RNAs related to abiotic stress responses in
plants, crucial for developing crop cultivars that are stress-resistant. They devised a
computational model for binary classification to predict stress-responsive lncRNAs using
stress-responsive and non-responsive lncRNA sequences (68.84% cross-validation accuracy
and 76.23% accuracy on an independent test set was achieved). An online prediction tool,
ASLncR, was also introduced. Similarly, Meher et al. [202] developed an ML-based method
for predicting abiotic stress-responsive miRNAs and pre-miRNAs; using pseudo-K-tuple
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features and SVM, the model achieved auROC/auPRC percentages of 65.64–77.94% and
independent test set accuracies of 62.33–69.21% across miRNA, pre-miRNA, and combined
datasets. An online prediction server, ASRmiRNA, was provided to facilitate the identi-
fication of stress-responsive pre-miRNAs and miRNAs. Both studies leveraged machine
learning, particularly SVM with nucleotide composition features, to accurately predict
abiotic stress-responsive miRNAs and pre-miRNAs, enabling the development of stress-
resistant crops. Online prediction servers were made available to improve accessibility.
Ahmed et al. [203] introduced a new activation function in a DL model, i.e., Gaussian Error
Linear Unit with Sigmoid (SIELU), designed to classify unknown abiotic stress protein
sequences, achieving superior accuracies between 80.78% and 95.11%. In another study,
Liu et al. [204] focused on classifying 216 plant species based on incomplete metabolite
content. Their research made use of a network clustering algorithm to group structurally
similar metabolites. Despite the incomplete data, this approach highlighted the importance
of metabolite content as a taxonomic marker by successfully clustering plants according to
known evolutionary relationships.

Deep learning techniques have demonstrated significant effectiveness in managing var-
ious plants and crops. For instance, a study on plant defense against salinity stress [205,206]
employed image processing and DL algorithms. This study incorporated high-throughput
plant phenotyping technologies, hyperspectral imaging (HSI), and advanced techniques for
segmenting plants and leaves. Table 2 provides an overview of ML-based tools specifically
designed to tackle abiotic stress in plants. These specialized tools address specific stressors,
offering valuable resources for researchers and practitioners focused on plant defense. PCA
and hierarchical clustering are employed for data visualization and gene expression pattern
analysis [207–209]. Algorithms such as t-SNE, OPTICS, and NMF aid genotypic data analy-
sis and metagene identification [210,211]. Transfer learning predicts specialized metabolism
genes in tomatoes using Arabidopsis data to address limited annotated plant data [212].
‘Evolutionarily informed ML’ uses Arabidopsis transcriptomics to predict maize plant’s
N-use efficiency genes [213]. For single-cell sequencing’s high dimensionality, advanced
algorithms such as t-SNE, UMAP, PHATE, MAGIC, Beeline, and Saucie are employed in
plant and human studies [214–218].

Table 2. AI-driven tools for enhancing plant defense against abiotic stress [20].

Tools Abiotic Stressor Algorithm Features and Description Websites

ASRpro
Drought, salinity,
light, high and low
temperatures

SVM Autocross covariance and K-aner
composition identification of proteins.

https://iasri-sg.icar.gov.in/asrpro/
(accessed on 1 March 2024)

AsmIR
Drought, salinity,
high and low
temperatures

SVM Pseudo-K-tuple nucleotide composition;
predicts abiotic stress miRNA.

https://iasri-sg.icar.gov.in/asmir/
(accessed on 1 March 2024)

PlncPRO Abiotic RF Predicts abiotic stress-responsive long
non-coding RNA

http://ccbb.jnu.ac.in/plncpro/
(accessed on 1 March 2024)

ASRmiRNA Abiotic SVM Predicts abiotic responsive miRNA.
http://cabgrid.res.in:
8080/asrmirna/dataset.html
(accessed on 1 March 2024)

ASLncR Abiotic SVM Predicts abiotic stress-responsive long
non-coding RNA.

https://iasri-sg.icar.gov.in/aslncr/
(accessed on 1 March 2024)

Ir-HSP High temperatures SVM Categorizes protein sequences into one
of the heat-shock families

http://cabgrid.res.in:
8080/ir-hsp/ (accessed on
1 March 2024)

DeeperHSP High temperatures CNN Identifies heat-shock proteins.
https://github.com/seonwoo-
min/DeeperHSP (accessed on
1 March 2024)

AFP-Pred Cold RF Predicts anti-freeze protein properties.

https://www3.ntu.edu.sg/
home/EPNSugan/index_files/
AFP-Pred.htm (accessed on
1 March 2024)

https://iasri-sg.icar.gov.in/asrpro/
https://iasri-sg.icar.gov.in/asmir/
http://ccbb.jnu.ac.in/plncpro/
http://cabgrid.res.in:8080/asrmirna/dataset.html
http://cabgrid.res.in:8080/asrmirna/dataset.html
https://iasri-sg.icar.gov.in/aslncr/
http://cabgrid.res.in:8080/ir-hsp/
http://cabgrid.res.in:8080/ir-hsp/
https://github.com/seonwoo-min/DeeperHSP
https://github.com/seonwoo-min/DeeperHSP
https://www3.ntu.edu.sg/home/EPNSugan/index_files/AFP-Pred.htm
https://www3.ntu.edu.sg/home/EPNSugan/index_files/AFP-Pred.htm
https://www3.ntu.edu.sg/home/EPNSugan/index_files/AFP-Pred.htm
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9. Challenges in Bioinformatics Education and AI for Crop Improvement
under Abiotic Stress

The transformative impact of ‘Next-Generation Sequencing’ technologies on genomics
research is evident, rendering it more cost-effective and efficient. However, the burgeoning
complexity of data poses a significant challenge, with data analysis emerging as the primary
bottleneck. Regardless of the availability of numerous genome assembly tools, de novo
genome assembly employing NGS data encounters formidable obstacles such as sequencing
errors, bias, repetitive regions, and substantial computational resource requirements [219].
The accuracy of sequencing data assumes paramount importance for subsequent analysis.
Hence, the development of user-friendly bioinformatics platforms is imperative for analyz-
ing vast multi-omics datasets generated by high-throughput technologies. Collaborative
data-sharing initiatives and adherence to common data standards facilitate the effective
utilization of bioinformatics resources. The integration of AI and ML with omics data
holds considerable promise, although it does face challenges. Each ML algorithm exhibits
specific strengths and weaknesses that influence predictive efficiency. Omics datasets are
inherently noisy and sparse, posing challenges in accurately identifying biological features
when integrating diverse sources [220]. Addressing imbalanced datasets is a prevalent
issue, often tackled through resampling strategies such as SMOTE [221,222]. Overfitting
poses a threat to the predictive capabilities of deep learning models, but techniques such
as dropout offer mitigation [223]. Factors such as data pre-processing, parameters, and
domain knowledge significantly influence ML effectiveness, necessitating adaptability to
multi-omics data and high dimensionality. The interpretation of complex models remains a
formidable challenge.

AI-assisted omics techniques hold the potential to revolutionize plant research and
agriculture. They facilitate early disease detection by analyzing molecular profiles before
visible symptoms appear, real-time plant health monitoring by correlating omics data
with phenotypes, prediction of disease dynamics by modeling genetic and environmental
factors, and customization of plant breeding for disease resistance. Moreover, AI can
optimize sustainable disease management by integrating omics data for precise pesticide
application. Future research endeavors should prioritize understanding plant responses to
combined biotic and abiotic stressors. The integration of AI-assisted omics with remote
sensing presents a potent approach to monitoring and mitigating plant stress. However, the
practical implementation of AI in plant omics necessitates robust algorithms, experimental
validation, and fostering collaborative connections among researchers, agricultural experts,
and data scientists. Additionally, the economic feasibility of integrating drone technology
into crop research underscores the potential for substantial returns on investment, driven
by improved crop monitoring and optimized resource use. In the context of managing
abiotic stress, drones offer a significant advantage by enabling precise and timely responses
to environmental challenges, which is critical for crops under stress conditions. While the
initial investment can vary significantly, the potential for substantial returns on investment
exists when drones are effectively used to optimize resources such as water, fertilizers, and
pesticides [224]. This economic feasibility is crucial for scaling AI-driven stress management
solutions, as it allows for more precise interventions compared to traditional methods such
as manual scouting or satellite imagery, especially under variable weather conditions [225].
Education in relevant technologies and bioinformatics assumes critical importance in
accurately translating experimental efforts. AI-based solutions such as genetic algorithm-
based ‘Internet of Precision Agricultural Things’ are gaining momentum for real-time
problem-solving in agriculture, such as predicting water requirements [226] and aiding
decision-making on plant patterns and water management. Integrating multi-omics data,
big data technology, AI, and robust bioinformatics analysis through approaches such
as “integrated genomic-environs prediction” can expedite plant breeding programs and
enhance genetic gains [227]. Establishing integrative plant breeding platforms and open-
source initiatives can catalyze smarter plant breeding endeavors.
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10. Conclusions

The convergence of bioinformatics tools and artificial intelligence offers a transfor-
mative approach to managing abiotic stress in plants. By integrating multi-omics data
and leveraging advanced AI algorithms, scientists can garner profound insights into the
complex regulatory networks and molecular mechanisms underlying stress responses.
Bioinformatics tools facilitate the identification of stress-responsive genes, regulatory ele-
ments, and molecular markers, while AI techniques enhance predictive modeling, gene
regulatory network interference, and real-time plant monitoring. These innovations are crit-
ical for developing stress-resilient plant varieties capable of thriving in increasingly harsh
environmental conditions due to global climate change and anthropogenic activities. Practi-
cal applications include predicting drought-resistant gene variants, identifying salt-tolerant
crop varieties, and real-time monitoring of plant health under extreme temperature condi-
tions through AI-driven phenomics platforms. AI and bioinformatics education can also
solve other agricultural problems, such as predictive modeling for disease management,
optimizing resource use, genetic improvement, enhanced crop monitoring, automated
farming systems, and climate adaptation. For instance, AI can analyze large datasets to
predict plant disease outbreaks, optimize water and fertilizer use, identify genetic mark-
ers for plant improvement, and model climate change scenarios to help farmers adapt
their practices. These technologies also facilitate real-time monitoring and automation in
farming, increasing efficiency and reducing labor costs. Despite the remarkable progress,
several challenges remain there. Developing user-friendly bioinformatics educational plat-
forms, establishing common data standards and addressing issues such as overfitting, data
imbalance, and model interpretability are essential for the effective integration of AI and
omics data. Recognizing the diverse needs of researchers, from novices to experts, our
review emphasizes the importance of selecting tools that match the user’s proficiency level.
Educational initiatives, interdisciplinary collaborations and trainings are essential to equip
the next generation of researchers with the required skills to utilize these advanced tools
effectively. By fostering a collaborative environment, the scientific community can drive
innovation and address global food security challenges more effectively. Integrating AI and
bioinformatics education creates a robust framework for enhancing abiotic stress tolerance
in plants and crops, offering a holistic strategy that is crucial for advancing sustainable
agriculture, securing food supply, and mitigating the impacts of climate change on global
crop production.
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