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Abstract: The rapid and accurate estimation of forest carbon stock is important for analyzing the
carbon cycle. In order to obtain forest carbon stock efficiently, this paper utilizes airborne LiDAR
data to research the applicability of different feature screening methods in combination with machine
learning in the carbon stock estimation model. First, Spearman’s Correlation Coefficient (SCC) and
Extreme Gradient Boosting tree (XGBoost) were used to screen out the variables that were extracted
via Airborne LiDAR with a higher correlation with carbon stock. Then, Bagging, K-nearest neighbor
(KNN), and Random Forest (RF) were used to construct the carbon stock estimation model. The
results show that the height statistical variable is more strongly correlated with carbon stocks than
the density statistical variables are. RF is more suitable for the construction of the carbon stock
estimation model compared to the instance-based KNN algorithm. Furthermore, the combination of
the XGBoost algorithm and the RF algorithm performs best, with an R2 of 0.85 and an MSE of 10.74 on
the training set and an R2 of 0.53 and an MSE of 21.81 on the testing set. This study demonstrates the
effectiveness of statistical feature screening methods and Random Forest for carbon stock estimation
model construction. The XGBoost algorithm has a wider applicability for feature screening.

Keywords: LiDAR; feature screening; carbon stock; bagging; random forest; forests; model

1. Introduction

Forests play an important role in regulating the balance of GHGs in the atmosphere
not only as a sink for GHGs due to their use of CO2 in photosynthesis but also as a source
of CO2 via wildfires [1]. Forest ecosystems account for the largest proportion of terrestrial
ecosystem components [2,3]. Forest ecosystems contain about 80% of aboveground carbon
and 40% of belowground terrestrial carbon [4]. At the same time, carbon storage is also an
important indicator of regional ecosystem service function [5]. The accurate estimation of
a regional ecosystem’s carbon storage and the exploration of its spatial distribution and
influencing factors are of great significance for ecosystem carbon sink function enhancement
and management [6]. At present, there are many methods for estimating forest carbon
stock, including the sample inventory method, carbon flux observation method, model
simulation method based on remote sensing technology, and so on. The required ground
data are mainly based on the national forest inventory data, and the biomass and carbon
stock of the sample plots are closely related to the storage capacity.

The traditional forest resources survey is based on sampling theory, with a ground
survey as the main method; however, the ground measurements of forest resource surveys
not only constitute a large amount of workload and consume a long period of time but
are also difficult to take consecutive samples over a large area [7]. In recent years, remote
sensing technology has developed rapidly; it has been applied by more and more experts
and scholars for its ability to accurately, conveniently, and quickly carry out large-scale
forest resource surveys in real time. It changes the original traditional forest resource survey
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methods, and in a short period of time, it can obtain large-scale data, providing a significant
advantage in acquiring metrics such as forest biomass [8,9], stocking capacity [10], crown
density [11], etc. Compared to the traditional carbon stock inventory methods that are
time-consuming, labor-intensive, and inefficient, the combination of LiDAR technology
and machine learning methods can efficiently and accurately estimate forest carbon stocks.
Zhang et al. [12] extracted 23 variables based on airborne LiDAR data, such as depression,
maximum height, height percentile, crown width percentile, etc. They then constructed
a biomass estimation model combining the AGB data using Random Forest and Support
Vector Machine algorithms. As a result, the prediction accuracies of the two models for the
AGB were both high. Chen et al. [13] extracted variables such as the mean height of the
forest, crown density, mean leaf area density, etc. Then, they established a multiple linear
regression model and power function model to estimate carbon stock based on UAV-LiDAR
point cloud data, and the results showed that the four-parameter nonlinear model had the
best fitting effect. Based on airborne LiDAR data, Mu et al. [14] extracted characteristic
variables such as the percentile height variable, maximum height, and the percentile density
variable of sample plots, and used two models (multivariate linear stepwise regression and
Random Forest regression) to estimate carbon stock. Their results showed that the training
accuracy and prediction accuracy of the Random Forest regression model were higher than
in the multivariate linear stepwise regression model, and the lowest estimation accuracy of
the Random Forest model was lower than that of the multivariate linear stepwise regression
model. The accuracy of the result is lower than the lowest estimation results of the multiple
linear stepwise regression model.

In the construction of carbon stock estimation models, redundant feature variables
can reduce the accuracy of data analysis and lead to the incorrect training process of
the model due to the reuse of this part of the data. Similarly, the elimination of feature
variables that are more related to the target variable will also reduce the accuracy and
fitting effect of the model. Therefore, variable screening plays a crucial role in improving
model efficiency and even enhancing model performance. In 2008, Fan et al. [15] proposed
a sure independence screening (SIS) method based on a correlation study using ultra-
high dimensional linear models, whereby feature variables with a weak correlation with
the response variable are eliminated to achieve data accuracy and fit. With the rapid
development of machine learning technology, variable screening plays an increasingly
important role in data analysis and data-driven modeling [16–19]. Li et al. [20] used SAR
and Landsat5 TM images to screen remote sensing feature variables using two methods,
stepwise regression and Bootstrap, and found that the variable modeling effect of Bootstrap
screening is better than that of stepwise regression.

In order to explore the applicability of the combination of different variable screening
methods with various machine learning methods to the forest carbon stock estimation
model, this study took the forest land in the Zengcheng forestry farm in Guangzhou
City, Guangdong Province as the study area. We used airborne LiDAR data to extract
the variables, then constructed the carbon stock estimation model using two variable
screening methods in combination with three machine learning methods, and compared
the effectiveness of the combination of different variable screening methods and machine
learning modeling methods. In this study, we introduced the Spearman’s Correlation
Coefficient (SCC) method and Extreme Gradient Boosting (XGBoost) algorithm to screen
the LiDAR variables and found that variable screening to remove redundant features can
make the carbon stock estimation model fit at a high level. We compared and analyzed the
accuracy of carbon stock estimation models constructed by combining different variable
screening methods and machine learning modeling methods to provide a basis for local
forest resource inventory and the formulation of forest resource management measures.



Sustainability 2024, 16, 4133 3 of 17

2. Materials and Methods
2.1. Site Description

The study area of this paper is located in the Zengcheng District Forestry Farm
(23.292◦–23.369◦ N, 113.681◦–113.815◦ E), Guangzhou City, Guangdong Province, which is
a state-owned forest farm with a total area of about 2777.55 hm2. This area is located in
the eastern part of Guangzhou City and has a subtropical oceanic monsoon climate, with
an average annual temperature of about 22.1 ◦C, making it warm and rainy, with long
summers and short winters. The average annual rainfall is 2039.5 mm, the average annual
relative humidity is 78.8%, and the annual sunshine is 1715.4 h. This natural condition
is very suitable for tree growth, so there are many kinds of trees and rich vegetation in
the forest, with tree species mainly including Masson pine (Pinus massoniana), Eucalyptus
(Eucalyptus robusta Smith), Camphor (Cinnamomum camphora (L.) Presl), Fir (China fir), etc.
The area of plantation in the forest is large. Due to this large forest plantation area and the
wide distribution of different tree species, this study selected part of the area for the carbon
stock study that covers an area of 6.83 hm2. The geographical location of the study area is
shown in Figure 1.
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Figure 1. Map of the study area.

2.2. Data Sources and Preprocessing
2.2.1. Data Acquisition

The data used in this study were collected using a Bell helicopter between 18–19 Novem-
ber 2019. The parameter settings applied for the helicopter are as follows: a flight altitude
of 500 m; a 45% side-to-side overlap of the flight paths; and a 65% heading overlap of the
flight paths. The laser sensor carried by the helicopter is the Galaxy Prime Sensor. The data
mainly consisted of airborne laser point cloud data. The settings of the sensor parameter
are shown in Table 1. The weather conditions in the study area during the data collection
operation were favorable, characterized by sunny and breezy conditions, no cloud cover,
and suitable light conditions. Information in the forest field can be accurately obtained,
which provides the basis for the study of single-tree segmentation, parameter acquisition,
and the accurate estimation of carbon stock.
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Table 1. Sensor parameters.

Parameter Value

Altitude/m 500
Ground speed/kn 60

Mapping bandwidth/m 175
laser wavelength/nm 1064

Pulse Repetition Rate/kHZ 50–1000
Scanning Angle/(◦) 10–60

Average density of point clouds/(pts/m2) 180

Positioning and Orientation System (POS)

POS AVTM AP60 (OEM)
220-channel dual-band GNSS receiver

GNSS Receiver Antenna with Iridium Filter
High Accuracy AIMU (Type 57)

2.2.2. Data Preprocessing

In this study, the data preprocessing mainly includes two parts: point cloud data
denoising and point cloud data normalization. The LiDAR scanning process is easily
affected by various factors, resulting in some non-negligible noise in the point cloud
data, which affects the effectiveness of detection [21]. In this study, the neighborhood
determination method is used to remove the noise points, the threshold for the number of
field points is set to 10, and the distance threshold is set to 5 times the standard deviation
of the mean elevation of the point cloud [22]. In this study, we use the elevation value of
the point cloud data to subtract the corresponding DEM elevation value to achieve the
normalization process, as shown in Figure 2.
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2.3. Samples and LiDAR Variables
2.3.1. Sample Dataset Construction

Carbon stock can be obtained through the calculation of biomass and the carbon
content coefficient, through photointerpretation and fieldwork. The tree species involved
in this study area are Masson pine (Pinus massoniana), Eucalyptus (Eucalyptus robusta
Smith), Camphor (Cinnamomum camphora (L.) Presl), and Fir (China fir). The calculation
of individual tree biomass is from measured individual tree information. The model
for calculating individual wood biomass using diameter at breast height is shown in
Equations (1)–(4). The calculation of carbon stocks is based on the carbon content factor of
different tree species and biomass calculated from the individual tree information. The tree
carbon content coefficients are Masson pine 0.5254 [23], Eucalyptus 0.4731 [24], Camphor
0.5117 [25], and Fir 0.5003 [26], and the source of the parameters is the standard issued by
the State Forestry Administration.

W1 = 0.09949D2.40859 (1)

W2 = 0.12576D2.46209 (2)

W3 = 0.01159D3.04803 (3)
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W4 = 0.07637D2.40393 (4)

where W1 is the Masson pine biomass, W2 is the Eucalyptus biomass, W3 is the Camphor
biomass, W4 is the Fir biomass, and D is the diameter at the breast height of individual trees.

2.3.2. LiDAR Variables Selection

Spearman’s Correlation Coefficient (SCC) is a statistical quantity obtained by ordering
the sample values of two random variables by the magnitude of the data and replacing the
actual sample values with the ordered values The essence of the Spearman’s Correlation
Coefficient (SCC) method lies in the correlation analysis based on the ordering position of
the original data [27], which has been widely used in carbon stock research, such as the
accumulation of organic carbon in lakes [28] and the succession of secondary forests [29].
The formula of Spearman’s Correlation Coefficient (SCC) is shown in (5):

ρs =
∑N

i=1
(

Ri − R
)(

Si − S
)

[
∑N

i=1
(

Ri − R
)2

∑N
i=1
(
Si − S

)2
] 1

2
(5)

where Ri and Si are the rank values taken for individual variables or data, respectively, R
and S denote the average rank of the two variables, respectively, and N is the total number
of observations.

XGBoost (Extreme Gradient Boosting) [30] is an algorithm based on the GBDT (Gra-
dient Boosting Decision Tree) structure; the GBDT algorithm is a method of generating
learners in the process of integrated learning. The idea behind the XGBoost algorithm
is to construct the objective function to obtain its optimal value and thereby obtain the
algorithm parameters. The objective function consists of a loss function and a canonical
term, as shown in (6). The objective function is parameterized using Taylor’s second-order
expansion and then the tree structure is introduced into the objective function. The purpose
is to construct the optimal tree using the optimal objective function and then obtain the
algorithm parameters.

obj =
n

∑
i=1

L(yi, y) +
K

∑
k=1

Ω( fk) (6)

where
n
∑

i=1
L(yi, y) is the loss function of the model, as well as the distance between the

predicted value and the measured value of the sample; yi is the predicted value of the
sample i; and y is the true value of the sample i. It is a regular term, which characterizes
the complexity of the tree.

Like the GBDT algorithm, the predicted value of the k models in the XGBoost algorithm
is the sum of the predicted values of the first k− 1 and the kth model currently trained.
Therefore, the objective function can be rewritten as shown in (7):

obj =
n

∑
i=1

L
(

yi, yi
k−1 + fk(xi)

)
+

K−1

∑
k=1

Ω( f k)+Ω( f k) (7)

Expanding it to Taylor’s second order and parameterizing it yields

obj =
J

∑
j=1

∑
iεIj

giwi +
1
2

∑
i∈I j

hi + λ

wj
2

+ αT (8)

where ∑
iεIj

giwi is the loss of samples on each leaf node; T stands for the number of leaf nodes;

α, λ stand for the hyperparameters, which are used to control the degree of punishment; w
stands for the value of each leaf node; and Ij denotes the samples on the jth leaf node.
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In this study, the variables screened using the above two methods and the original
extracted variables were used to construct a carbon stock estimation model using three
machine learning methods, respectively, and three sets of independent variable schemes
were set up. The three schemes are: Scheme 1, Scheme 2 and Scheme 3. Scheme 1 is
the combination of variables screened based on Spearman’s Correlation Coefficient (SCC)
method and machine learning methods, Scheme 2 is the combination of variables screened
based on the XGBoost algorithm and machine learning methods, and Scheme 3 is the
combination of all the point cloud feature variables extracted based on the LiDAR point
cloud data and machine learning methods.

2.4. Model Construction and Accuracy Analysis

The Bagging algorithm’s main idea is to randomly select a sample from the initial
dataset, which contains S samples, and add it back to the dataset to create a sampling
set. After conducting M random sampling operations, K sampling sets are obtained, each
containing M training samples. A learner is a model obtained from the data by executing
a learning algorithm and is an instantiation of the learning algorithm in the space of
given data and parameters. In the process of integration learning, an individual learner is
generated from the training data via an existing learning algorithm, and if the integration
contains only individual learners of the same type, it is called a “base learner”. A base
learner is then trained based on each sampling set, and these base learners are combined to
form a strong learner. When solving regression problems, the mean of the K model training
results is used as the prediction result; when solving classification problems, the voting
method is used to generate the results. The main steps of the KNN algorithm are calculating
the distance between the test samples and the training samples, selecting the value of K,
determining to which category the majority of the K training samples belong, and assigning
the information of this category to the test samples. Random Forest (RF) is an algorithm
operated by constructing an ensemble of decision trees using resampling techniques [31].
The basic principle is to construct multiple samples from the original training samples after
randomly extracting the data using the put-back (Bootstrap) resampling technique, and
then construct N decision trees via the random splitting of nodes for each of the resampled
samples as the training set of the tree [32].

In summary, in this study, the variables extracted from LiDAR-based data after feature
screening are the independent variables, and the carbon stock calculated from biomass after
conversion of carbon content coefficients is the dependent variable. The carbon stock esti-
mation model was constructed using three machine learning methods: Bagging, K-nearest
neighbor (KNN), and Random Forest (RF), respectively. The estimation model-building
process was performed on Python 3.9.10. The model estimation effect was analyzed by
comparing the R2 and RMSE metrics. The Bagging algorithm is regression realized by
calling the BaggingRegressor function in Python 3.9.10. The KNN algorithm is realized by
calling the KNeighborsRegressor function of the neighbors package in the Sklearn library.
The Random Forest algorithm regression is realized by calling the RandomForestRegressor
function of the ensemble package in the Sklearn library.

In this paper, we analyze the model’s ability to explain the sample data based on the
cross-validation method and use the “train_test_split” function of the Sklearn library in the
Python language to divide the dataset containing information of 300 single-wood samples
into a training set and a test set with the ratio of 7:3:210 samples are used as the training set
and 90 samples are used as the test set. The single-wood sample information is the value of
the independent variables, and the carbon stock on the single-wood scale is the value of
the dependent variables. In this study, the validation accuracy of the model is evaluated
using two metrics, the mean squared error (MSE) and the coefficient of determination (R2).
MSE is the average of the sum of squares of the difference between the predicted value and
the true value, and the smaller the value of MSE is, the better the model fits. R2 is a metric
used to assess the effect of model fitting, which denotes the proportion of variance in the
dependent variable that can be explained by the independent variable. R2 is an indicator of
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the explanatory power of the model. The value of R2 ranges from 0 to 1, and the closer the
value of R2 is to 1, the better the model fitting effect is indicated to be.

In this study, we take advantage of Airborne LiDAR’s ability to acquire information
about the vertical structure of the forest canopy and use the variables extracted from point
cloud data to construct a carbon stock estimation model via screening using statistically
based and machine learning methods and comparing the effects.

3. Results
3.1. Variables Extraction

In this study, the variables were extracted based on the LiDAR point cloud data.
According to previous studies, there is a correlation between height-related variables and
density-related variables and carbon stocks. Therefore, this study extracted height statistical
variables and density statistical variables based on airborne LiDAR data.

3.2. Variables Optimization

In this study, the point cloud feature variables that were selected using the SCC method
and the XGBoost algorithm and all the variables extracted based on the airborne LiDAR
data were used as the explanatory variables, and the carbon stocks that were calculated
based on the biomass and carbon content coefficients were used as the response variables,
in order to construct a model for carbon stock estimation. Figure 3 shows the correlation
between forest carbon stocks and LiDAR height statistical variables using the SCC variable
screening method, Figure 4 shows the correlation between carbon stocks and LiDAR density
statistical variables using the SCC variable screening method.

The correlation matrix between the explanatory variables and the response variables
calculated according to Spearman’s correlation analysis is shown on the left side of all the
following two figures, and the interval for correlation classification 0.2, is shown on the
right side of all the figures.
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The correspondence of the variables and the interpretation of the variables are shown
in Tables 2 and 3.

Table 2. Correspondence between symbols and height statistical variables and interpretation of
height statistical variables.

Variable Interpretation

elev_aad_z Average absolute deviation of height.

elev_canopy_relief_ratio
mean−min
max−min , where meanis the average height of all points in the cell, min is the minimum height
value of all points in the cell, and max is the maximum height value of all points in the cell.

elev_curt_mean_cube
3
√

∑n
i=1 z3

i
n , where zi is the height value of the ith point in the statistical cell and n is the total

number of points in the cell.

elev_cv_z Coefficient of variation of height for all points within the cell.

elev_IQ Quartile spacing of height percentiles.

elev_kurtosis Flatness of the height distribution for all points within the cell.

elev_mean The average of the heights of all points in the cell.

elev_sqrt_mean_sq
2
√

∑n
i=1 z2

i
n , where zi is the height value of the ith point in the statistical cell and n is the total

number of points in the cell.

elev_stddev Standard deviation of the heights of all points within the cell.

elev_variance The variance of the height of all points within the cell.

According to the definition of the correlation coefficient, the closer the correlation
coefficient is to −1, the greater negative correlation exists between the two variables; on
the contrary, the closer the correlation coefficient is to 1, the greater positive correlation
exists between the two variables. According to the statistical classification of correlation
coefficients, a decrease in numerical value indicates a smaller correlation between variables.
As can be seen from Figure 3, the correlation coefficients of the height statistical variables
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with carbon stocks as a whole are high, and the correlation is at a medium level or above,
with the correlation between elev_IQ, elev_sqrt_mean_sq, elev_variance and carbon stocks
at the highest level.

Table 3. Correspondence between symbols and density statistical variables and interpretation of
density statistical variables.

Variable Interpretation

density_metrics[0]

The point cloud data are divided into ten slices
of the same height from low to high, and the
ratio of the number of echoes in each layer is

the density variable of the corresponding layer
(numbers in [ ] indicate the number of layers).

density_metrics[1]
density_metrics[2]
density_metrics[3]
density_metrics[4]
density_metrics[5]
density_metrics[6]
density_metrics[7]
density_metrics[8]
density_metrics[9]

In this study, height statistical variables with correlation coefficient values of 0.8 or
more were selected; the optimal carbon stock model construction variables selected based
on the Spearman’s Correlation Coefficient (SCC) method are shown in Table 4.

Table 4. Spearman’s optimal variable selection results.

Categorization of Variables Selection Results

Height variables
elev_IQ

elev_sqrt_mean_sq
elev_variance

Density variables

density_metrics[9]
density_metrics[9]
density_metrics[9]
density_metrics[9]
density_metrics[9]

In this study, the “model.feature_importances” function is utilized to score the feature
importance (F score) of all the above LiDAR point cloud feature variables. The left side of
the figure is labeled to correspond to the above extracted variables one by one in order, and
the results are shown in Figure 5.
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The correspondence of the symbol to height statistical variables and the interpretation
of the variables are shown in Table 5. The correspondence of the symbol to density statistical
variables and the interpretation of the variables are shown in Table 6.

Table 5. Correspondence between symbols and height statistical variables.

Symbol Variable

f0 elev_add_z
f1 elev_canopy_relief_ratio
f2 elev_curt_mean_cube
f3 elev_cv_z
f4 elev_IQ
f5 elev_kurtosis
f6 elev_mean
f7 elev_sqrt_mean_sq
f8 elev_stddev
f9 elev_variance

Table 6. Correspondence between symbols and density statistical variables.

Symbol Variable

f0 density_metrics[0]
f1 density_metrics[1]
f2 density_metrics[2]
f3 density_metrics[3]
f4 density_metrics[4]
f5 density_metrics[5]
f6 density_metrics[6]
f7 density_metrics[7]
f8 density_metrics[8]
f9 density_metrics[9]

According to the importance ranking of the scores of the above variables, in this study.
In this study, the location of “the first inflection point” of the importance score and the
variables whose scores are greater than their locations are selected as the final selection
results. According to Figure 5, the inflection point of importance score in height statistical
variables appeared between f3 and f6, so f6 and f0 were selected as the results of the selection
of height statistical variables. Based on Table 5, we can see that they are elev_add_z and
elev_kurtosis. The importance scores of density statistical variables appeared between f3
and f5, so f5, f2, f1, and f0 were selected as the final selection results. Based on Table 6, it
can be seen that they are density_metrics[0], density_metrics[1], density_metrics[2], and
density_metrics[5], respectively. The optimal carbon stock model-constructing variables
selected based on the XGBoost algorithm are shown in Table 7.

Table 7. XGBoost optimal variable screening results.

Categorization of Variables Selection Results

Height variables elev_add_z
elev_kurtosis

Density variables
density_metrics[0]
density_metrics[1]
density_metrics[2]

3.3. Modeling of Carbon Stock Estimation

In this study, the collected sample data of single wood was randomly divided into
a training set and a validation set in the ratio of 7:3. In this case, it is worth noting that
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the test set is used to adjust the parameters and decide the time to stop training, and the
prediction set is used to evaluate the generalization ability of the final model. In this study,
the three models built based on machine learning methods were derived by comparing the
R2 and MSE metrics.

The results of model fitting based on Scheme 1 are shown below. Among them,
Figure 6 shows the fitting effect of the training set, and Figure 7 shows the fitting effect of
the test set. The red line is the fitted line, and the black dots are the sample data points.
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The effects of the variables screened using Spearman’s Correlation Coefficient (SCC)
method on the estimation of the model constructed with the three machine learning meth-
ods are shown in Table 8.

Table 8. Fitting effect of model based on SCC–Machine Learning.

Bagging KNN Random Forest

train test train test train test
R2 0.73 0.35 0.21 0.12 0.82 0.42

MSE 13.94 24.22 26.46 27.98 12.22 19.69
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The results of the model fitting based on Scheme 2 are shown below. Figure 8 shows
the training set fitting results and Figure 9 shows the test set fitting results. The red line is
the fitted line, and the black dots are the sample data points.
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Figure 9. Schematic diagram of the fitting effect of the test set of the XGBoost algorithm. (a) Testing
effect of the Bagging method; (b) testing effect of the KNN method; (c) testing effect of the Random
Forest method.

The effects of the variables screened using Spearman’s Correlation Coefficient method
on the estimation of the model constructed with the three machine learning methods are
shown in Table 9.

Table 9. Fitting effect of model based on XGBoost–Machine Learning.

Bagging KNN Random Forest

train test train test train test
R2 0.80 0.42 0.27 0.15 0.85 0.53

MSE 12.61 22.46 23.63 24.36 10.74 21.81

The results of model fitting based on Scheme 3 are shown below. Figure 10 shows the
training set fitting results and Figure 11 shows the test set fitting results. The red line is the
fitted line, and the black dots are the sample data points.
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The effects of the variables screened using Scheme 3 on the estimation of the model
constructed with the three machine learning methods are shown in Table 10.

Table 10. Fitting effect of model based on Scheme 3.

Bagging KNN Random Forest

train test train test train test
R2 0.72 0.31 0.20 0.13 0.82 0.36

MSE 14.38 24.28 25.48 28.97 12.07 23.61

In comparing the fitting results of the three methods, it can be seen that some differ-
ences exist in the accuracy of the carbon stock estimation model constructed based on the
above two variable screening methods. In the training set, the carbon stock estimation
model constructed via the combination of the XGBoost–Random Forest methods has a
better fitting effect, which is the same as the model fitting results in the test set, indicating
that the combination of the XGBoost–Random Forest methods has a better feasibility for
the construction of carbon stock estimation model.

4. Discussion

Forest carbon sinks exhibit significant ecological and economic worth, making them
an indispensable approach to combatting global climate change [33]. Learning how to
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accurately and rapidly assess forest carbon stocks is the major research focus of many
scholars. With the rapid development of remote sensing technology, the use of remote
sensing platforms for carbon stock estimation is becoming extremely consistent and reliable.
As a result, remote sensing methods have become a major tool for quantifying forest carbon
stocks on a wider scale [34].

LiDAR is an active remote sensing technology that uses short-wavelength laser pulses
to penetrate forest canopies and obtain vertical structure information [35]. In contrast to
Zhou et al. [36]’s study on categorizing feature variables based on the Random Forest
algorithm and the SCC method, this study compares the effectiveness of an integrated algo-
rithm of gradient boosting by iteratively training a series of weak learners and combining
them with a statistical approach based on monotonic equations evaluating correlations of
multiple statistical variables for the preferential selection of feature variables.

In this study, three machine learning methods, Bagging, KNN, and Random Forest,
are used to construct a carbon stock estimation model. Compared with Mateus’s study on
estimating carbon stock based on machine learning methods with the Generalized Linear
Modeling approach (GLM) [37], we compare the estimation effectiveness of the constructed
models among the three machine learning methods. Our approach demonstrates that, for
the prediction of carbon stock, the method constructed and combined with the multiple ma-
chine learners to accomplish the learning task significantly outperforms the instance-based
machine learning approach, and the value of R2 reaches 0.84. Comparing the estimation
results of the Bagging algorithm and the Random Forest algorithm, the Random Forest
algorithm slightly outperforms the Bagging algorithm, a phenomenon that is particularly
prominent in the test set. This also proves that Random Forest is an improved version of
Bagging, as the Random Forest algorithm further introduces random attribute selection
during the training process of the decision tree, based on building a Bagging integration
with the decision tree as the base learner.

Variable screening plays a crucial role in improving model efficiency, model accuracy,
and stability. Long et al. [38] constructed a vegetation carbon stock estimation model
and also found that constructing a vegetation carbon stock estimation model based on
bandwidth preference was the most effective.

However, comparing the variables selected using Scheme 3 with the first two methods,
respectively, it can be seen that the predictive effect of the model constructed based on the
variables of Scheme 3 has receded on the test set. And, the R2 value is 0.1–0.2 lower than that
of the model constructed by the first two methods. The R2 value of the model constructed
by combining the KNN algorithm on the test set is down to 0.13. This suggests that the
predictive effect of the model constructed using the KNN algorithm is not significant in
the case of the variables that are optimal. This is true even when they are selected based
on different methods or when they have a high correlation with the dependent variable;
accumulating them does not give the optimal estimation, and there is a tendency for them
to decrease with the increase of the feature variables. However, it should be noted that
this study was tested on a limited dataset, and there are various factors affecting the
effectiveness of the carbon stock estimation model construction; in order to draw more
generalized and stable conclusions, it is necessary to carry out the study on a larger number
and variety of sample datasets, such as the type of tree species and the scale of the sample
plots. The dataset of this experiment was obtained at a small to medium scale in the forest
field, and sample datasets need to be obtained at a larger scale such as the national scale or
even a larger scale to verify its applicability at different regional scales.

In this paper, the carbon stocks calculated based on biomass and carbon content coeffi-
cients in the sample plots are used directly as the dependent variable, and the height and
density variables extracted from the point cloud data are used as the independent variables
to construct the carbon stock estimation model. This is in contrast to the studies conducted
by other scholars on the correlation between the construction of the aboveground biomass
estimation model and the remotely sensed characterization factors or the combination of
remotely sensed characterization factors and the point cloud characterization variables. For
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example, Wang et al. [39] extracted vegetation indices based on Sentinel2 image data to
construct an aboveground biomass estimation model, and Du et al. [40] extracted point
cloud feature variables such as canopy cover and leaf area index, as well as texture features
such as variance and mean, to construct an aboveground biomass model based on Landsat
image data and airborne LiDAR point cloud data; the methodology of this paper has
great potential to study the direct correlation between point cloud feature variables and
carbon stock.

In this paper, a carbon stock estimation model is constructed based on LiDAR tech-
nology through different machine learning methods, and the variables extracted based
on the LiDAR data are utilized for the construction of the estimation model. Compared
with the previous estimation of forest stock only based on remote sensing imagery, this
paper utilizes the characteristics of the LiDAR data that can reflect the vertical information
of forests to highlight the role of vertical variables in the construction of the carbon stock
estimation model. This shows that the machine learning method is less affected by human
interference and has a stronger learning ability, which can effectively construct the carbon
stock estimation model.

Among the carbon stock models constructed based on Spearman’s Correlation Co-
efficient (SCC) method, the XGBoost algorithm, and the three machine learning methods
of Bagging, KNN, and RF, the XGBoost algorithm, Bagging method, and Random Forest
method have the best performance. This study shows that the combination of variable
screening and the integration of machine learning algorithms to estimate carbon stock is
more effective and suitable for the estimation of carbon stock. This study shows that the
estimation of carbon stock via variable screening combined with the integrated learning
algorithm in machine learning is more effective and has the best applicability. However,
the sample dataset of this study is insufficient, and there are many factors affecting carbon
stock such as climate conditions and soil type, so this study only constructs a carbon stock
estimation model applicable to a specific period of time.

5. Conclusions

This study compares the effectiveness of Spearman’s Correlation Coefficient (SCC) in
statistical methods and the XGBoost algorithm in machine learning algorithms in screening
carbon stock estimation models and combines the three machine learning methods with
the above two feature screening methods to explore the optimal model for carbon stock
estimation. The results are as follows:

1. Compared with density statistical variables, height statistical variables have a higher
correlation with carbon stocks;

2. Comparing and analyzing the performance of the three algorithms in fitting the model,
the Bagging algorithm and RF algorithm fit the model with a larger R2 and a smaller
MSE, which is a better fitting effect; on the contrary, the KNN algorithm fits the
model with the smallest R2 and a higher MSE, which is a poor fitting effect. Therefore,
compared to instance-based machine learning algorithms, the integrated learning
method has better applicability for the construction of a carbon stock estimation
model, especially the Random Forest method;

3. The accuracies of the carbon stock estimation models constructed using the two vari-
able screening methods are at a high level but comparing the effects of the carbon stock
estimation models constructed on the basis of the two variable screening methods in
the training and test sets, the XGBoost algorithm performs optimally.

In summary, comparing and analyzing the performance of the three algorithms in fit-
ting the model, the combination of Spearman’s algorithm and the Random Forest algorithm
has the best fitting effect; on the contrary, the KNN algorithm does not have a high accuracy
in fitting the model, and the fitting effect is not good. Therefore, the XGBoost–Random
Forest combination method is more suitable for building a carbon stock estimation model
in this study area.
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