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Abstract: Pistacia eurycarpa Yalt and Pistacia khinjuk Stocks are two important endemic tree species
inhabiting mountainous regions in Iraq. Their cultural, medical, and ecological benefits have captured
the interest of this study. Numerous researchers have revealed how and to what extent global climate
change alters species’ habitats and distribution. This approach aims to quantify the current and future
distribution of these tree species in the region and to provide baseline data on how Pistacia respond
to the changing environment. Three socioeconomic pathway scenarios (SSP 126, 245, and 585) in two
general circulating models (GCMs), MIROC-ES2L and BCC-CSM2-MR, have been utilized to examine
the probable future geographical shift of these species during different time periods (2041–2060,
2061–2080, and 2081–2100). This study used the MaxEnt model and geospatial techniques for:
(i) anticipating the present level of distributions and assessing the impact of climate change on these
species’ possible future distributions; (ii) estimating the areas of species overlap; and (iii) finding the
most significant environmental variables shaping their distributions, according to 11 environmental
variables and 161 known localities. The findings revealed that 30 out of 36 modeling results showed
range expansion in both the MIROC-ES2L and BCC-CSM2-MR models with 16/18 for P. eurycarpa and
14/18 for P. khinjuk. The overall species range expansions and increase in habitat suitability (mainly
in the north and northeast) were related to precipitation during the wettest months, topography, and
soil type structure (i.e., Chromic Vertisols, Lithosols, and Calcic Xerosols). These recent discoveries
provide priceless new information for forestry management efforts and the conservation plan in
Iraq, particularly in the overlapping areas in the mountainous regions and highlands. Geospatial
approaches and correlation-based modeling are effective tools for predicting the spatial pattern of
tree species in the mountain environment.
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1. Introduction

The genus Pistacia (Pistacia L. 1753) belongs to the order Sapindales and the Anac-
ardiaceae family. The taxonomy of the genus’ eleven species is based on factors such as
molecular analysis, morphology of the leaf, and floral structure [1]. Pistacia can be observed
on sandstone and limestone hills with an elevation range of 30 to 2500 m, steep dry slopes,
and rocky hillsides. The genus originated in Central Asia, and according to Mohannad
G and Duncan M [2], it is distributed across southern Europe (the Mediterranean area),
West and northern Africa, Central Asia, Central America, and the Middle East [3]. Its
distribution in the Middle East is especially concentrated in the Kurdistan Region of Iraq
(KRI), where it is located between the northeast of Iraq, southern Turkey, northeast Syria,
and western Iran [4].

Only three Pistacia species, Pistacia eurycarpa Yalt, Pistacia vera L., and Pistacia khinjuk
Stocks, have been described and well documented so far, in the KRI [2,3]. Only P. vera L., is
grown in cultivation; while the other two species are endemic to the KRI’s Sulaimani, Erbil,
Duhok, and Halabja Governorates (Figure 1). P. khinjuk and P. eurycarpa (Figure 2) reach
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heights of 3 to 7 m and 4 to 20 m, respectively. Additionally, P. eurycarpa according to the
conclusion of Rankou, et al. [5] is the same as P. atlantica subsp. kurdica, which is a native
Kurdish wild tree plant, which the locals call “Dar qezwan” or “Dareben” [4].
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by Barham A. HamadAmin.

Currently, in Iraq, habitat degradation [6–8], overexploitation (ruthless collecting by
people for domestic needs, such as firewood, medicine, and national trafficking), forest
fires [9] and warfare [10] are some of the threats that significantly influence forest trees,
including P. khinjuk and P. eurycarpa. These threats could increase as the climate changes.
Global climate change and other factors, including elevation and soil properties, affect
numerous types of plant species, particularly their spatial distributions [11]. Not only does
climate change affect present plant phenology, physiology, or distribution, but it also affects
how the species will fare in the future [11–13]. The target species of this study have remark-
able cultural, ecological, and ethnobotanical values. For example, isolated compounds
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and crude extracts of such species, including flavonoids, oil, resin, tocopherols, fatty acids,
phytosterols, and phenolic compounds, have remarkable pharmacological features and
medicinal significance (e.g., analgesic, anti-inflammatory, antifungal, antimicrobial) [14], in
addition to their important contribution to the stabilization and integration of the ecosystem
of the forest and their nutritional qualities [15]. Moreover, locals consume the fruits of
P. eurycarpa, which has considerable antibacterial action against Helicobacter pylori, as well
as utilize the resin from the plant to manufacture chewing gum, jam, and food [16], and to
aid digestion and stomach relief [17]. Animals in veterinary departments have been treated
with the fruits and leaves from P. khinjuk, and the resin is used to alleviate nausea, motion
sickness, and stomach pain [15].

Previous research on Pistacia has mostly concentrated on its medicinal features [16,18,19],
ethnobotany [4,14,20], cytology [21,22], classification [2], molecular biology [23–25],
morphology [24,26], anatomy [21,27], and to a limited extent, distributions [1,28]. Nev-
ertheless, to the best of the researchers’ knowledge, no comprehensive studies about the
geographic ranges of the Pistacia genus have ever been conducted in Iraq, and none have
considered the present and future potential distributions of the P. eurycarpa and P. khinjuk
species. Thus, gathering baseline data on these two tree species in Iraq’s mountain ecosys-
tems will help us better understand how climate change is affecting the area and what
management measures are working.

In terms of the current methodologies, the most extensively used methods for mapping
and assessing species distributions in respect to environmental indicators are geographic
information systems (GIS) and species distribution models (SDMs) [29]. Statistical methods
are used in SDMs to assess and predict the species spatiotemporal occurrence [30,31]. SDMs
estimate the species geographical distribution, namely, the probable locations where the
species’ presence meets its environmental characteristics [32]. They can also be used to
identify locations that might be used to organize future survey efforts, mark protected
areas for conservation initiatives, reintroduce species, and provide important assistance in
discovering previously undiscovered populations [33]. As a machine learning technique,
maximum entropy (MaxEnt) is the least sensitive to small sample sizes that relies on
presence-only data, and is one of the most extensively used and well-applied models
among the SDMs [34].

In this study we aim to: (i) predict and map the present and future spatial distributions
for these species in Iraq; (ii) estimate the distributional variations between the present and
future statuses (loss and gain, shift of range); (iii) map areas where the two species’ ranges
overlap; (iv) identify pertinent environmental factors affecting the species’ distribution;
and (v) estimate the direction and magnitude of the region shift from the present to
the future.

2. Materials and Methods
2.1. Study Area

Iraq is situated in the Middle East, covering an area of 438,320 km2, and is bordered
by Iran to the east, and Jordan to the west, Turkey to the north, and the Arabian Gulf
and the Kingdom of Saudi Arabia to the south (longitude: 38◦45 to 48◦45′ E and latitude:
29◦15′ N to 38◦15′ N) (Figure 1). Iraq is divided into four major physiographic regions:
the northeastern highlands, the uplands (areas of undulating and hilly terrain in the north
between the Euphrates and Tigris), the central and southeast plains of alluvial (marshlands),
and the western and southern desert [35,36]. Additionally, it has four distinct seasons: fall
(October to November), a hot and dry summer (July to October), spring (March to May),
and a chilly and rainy winter (December to February). The driest seasons are summer
and autumn, while winter and spring get around 90% of the yearly precipitation [37].
Most of Iraq’s Kurdish population lives in the northeast of the country, where the Zagros
Mountains rise with several peaks. The mountains and highlands are often inaccessible
with an elevation range from 800 to 3544 m [38]. In the desert of the southern region to the
mountainous areas of the northeastern region, the average daily mean temperature during
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the past year and the precipitation ranges from 28 ◦C to 9.8 ◦C and below 100 mm/year
to more than 900 mm/year, respectively. The country is prone to drought and heat wave
calamities because of the exceptionally high temperatures and near nonexistent rainfall
from May to October [37]. Erbil, Duhok, Sulaimani, and Halabja are the four governorates
that make up the KRI, which is placed at 37◦38′ N 46◦35′ E and has an overall area of
51,173.65 km2. The KRI is dry and hot in the summer and wet and cold in the winter [39,40].
The KRI is used as the model boundary in this research due to the region’s similarity in
terms of climate, physiography, and forest structure and composition [39].

2.2. Ground Data for P. eurycarpa Yalt and P. khinjuk Stock

Multiple surveys were carried out in the Sulaimani Governorate between 14 July
and 25 December 2021 to obtain the presence data for both species. These data were
gathered using the stratum sampling technique [41]. The villagers’ expertise and Flora of
Iraq [3], together with a handbook guide, have all been crucial in identifying and gath-
ering the data. Each sample record was visited, looked through, photographed, and
herbarium-ready (Figure A1). Plant phenotypes (observable characteristics) were used in
this research to recognize and classify both species. Moreover, 161 GPS ground records
(P. eurycarpa = 89, P. khinjuk = 72) were initially collected as a result of the survey efforts.
Based on Boakes, et al. [42], geographical filtering of 1 km was performed to the dataset to
minimize the spatial autocorrelation between the sites. This resulted in a reduction of the
points of sample to 135 records (n = 78 and n = 57, for both species). Applying the spatial
filtering approach is beneficial in reducing sample error and improving the variability of the
altitudinal differences among the sites [43]. For the spatial filtering and quality verification,
the extended SDMtoolbox 2.5 and ArcGIS 10.3 (ESRI, Redland, CA, USA) software were
used [44].

2.3. Environmental Datasets

According to Guest and Townsend [3], both species are frequently found in Iraq’s
forest zones and sporadically in the forest-steppe transition and moist steppe zones. This
is especially true in the northeastern regions, which primarily include the governorates
of Duhok, Erbil, Sulaimani, and Halabja. Pistacia does not naturally exist in other regions
of Iraq. The KRI’s geographical scope was thus, used for our modeling needs to extract
the environmental variables, while clipping off the research region (Figure 1). Numer-
ous research has emphasized the significance of a specified geographic range in SDM
modeling [45,46]. Climate, topography, and edaphic environmental factors are some of the
major factors affecting the species’ range [47,48]. Multiple environmental factors have been
used to develop the model. To construct the model, 19 bioclimatic variables were taken into
account for the present (from 1970 to 2000) and future climatic time frames (i.e., 2041–2060,
2061–2080, and 2081–2100), under three common socioeconomic pathways (SSP 585,
245 and 126) [49]. The present and future climate data were obtained from the world climate
database (www.worldclim.org) [50]. The Earth System version 2 for long-term simulations
(MIROC-ES2L) and the Beijing Climate Center Climate System Model (BCC-CSM2-MR),
two models from the most recent sixth level of the Coupled Model Intercomparison Project
(CMIP6), are included in the future climate models [51].

In comparison to earlier models (i.e., CMIP5), the CMIP6 models are very reflective of
the concentrations of greenhouse gases (GHG) and provide superior simulations of temper-
ature under atmosphere–biosphere transitions, complex topography, and an improvement
in model resolution. In order to comprehend: (i) the future climate in the context of internal
variability, predictability, and uncertainty, (ii) the Earth’s reaction to forcing, (iii), the origin
of the models’ systematic biases, and (iv) the cause of the models’ systematic biases, the
CMIP6 models include specific climatic issues. In CMIP6, the current analysis made use of
the recently created future scenarios [52], known as shared socioeconomic pathways (SSPs)
that upgrade the depiction of the expected socioeconomic and technological growth in
the scenarios of future climatic conditions [53]. Only three of the five SSP scenarios, fossil

www.worldclim.org
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fuel-based development (SSP5), middle-of-the-road development (SSP2), and sustainable
development (SSP1), were actually employed [53].

The topographic variables were collected from the Shuttle Radar Topography Mission
(SRTM) (http://srtm.csi.cgiar.org/srtmdata/ (accessed on 1 February 2022)), including
the DEM (digital elevation model), aspect (estimated in degree from the DEM), and slope.
The remaining edaphic factors, including the soil pH and soil moisture level, were also
retrieved from the Center for Sustainability and the Global Environment (SAGE) (http:
//www.sage.wisc.edu/atlas/index.php (accessed on 10 February)) database. Additionally,
the datasets for geology and soil type were obtained from the Food and Agriculture
Organization of the United Nations (https://www.fao.org/soils-portal/data-hub/soil-
maps-and-databases/ (accessed on 1 March 2022)) and the United States Geological Survey
(https://certmapper.cr.usgs.gov/data/apps/world-maps/ (accessed on 1 March 2022)).

The ArcGIS 10.3 software was utilized to pre-process the data and spatially resample
all the variables to a resolution of 1 km [54]. Due to the great spatial correlation (collinear-
ity) among the variables, for both species, out of the 27 environmental parameters only
11 were involved in the model construction (Table 1). To keep predictors with a pairwise
Pearson’s correlation of |r| 0.8, a conditional threshold technique was used in order to
avoid collinearity [55]. For the predictors, the pairwise Pearson’s correlation analysis
was performed using the SDMtoolbox extension and ArcGIS 10.3. (ESRI, Redland, CA,
USA) [56].

Table 1. The environmental factors taken into account for modeling. (The model development process
employed just the variables in bold).

Variable Code and Unit P. eurycarpa P. khinjuk

Annual mean temperature Bio1 (◦C)
√

Mean diurnal range Bio2 (◦C)
√ √

Temperature seasonality Bio4 (standard deviation × 100)
Isothermality (BIO2/BIO7) Bio3 (×100)

Max temperature of warmest month Bio5 (◦C)
√

Min temperature of coldest month Bio6 (◦C)
Temperature annual range Bio7 (Bio5-Bio6) (◦C)

Mean temperature of wettest quarter Bio8 (◦C)
Mean temperature of driest quarter Bio9 (◦C)

Mean temperature of warmest quarter Bio10 (◦C)
Mean temperature of coldest quarter Bio11 (◦C)

Annual precipitation Bio12 mm
√ √

Precipitation of wettest month Bio13 mm
√ √

Precipitation of coldest quarter Bio19 mm
Precipitation of warmest quarter Bio18 mm

Precipitation of driest quarter Bio17 mm
Precipitation of wettest quarter Bio16 mm

Precipitation seasonality Bio15 mm
Precipitation of driest month Bio14 mm

Slope Slope (degree)
√ √

Aspect Aspect (degree)
Soil type FAO soil classification

√ √

Soil carbon Soil carbon (%)
√ √

Soil moisture Soil moisture (mm)
√ √

Soil pH Soil (parts hydrogen)
√ √

DEM Digital elevation model (m)
√ √

Geo
√ √

2.4. Model Building

The MaxEnt model was chosen due to its ability to produce results that are com-
parable to those of presence–absence model approaches and presence-only dependent
model types [34], as well as its superior predictive accuracy when compared with other

http://srtm.csi.cgiar.org/srtmdata/
http://www.sage.wisc.edu/atlas/index.php
http://www.sage.wisc.edu/atlas/index.php
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
https://certmapper.cr.usgs.gov/data/apps/world-maps/
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approaches [32,57]. For P. eurycarpa and P. khinjuk, 70% of the presence data points were
used to train the models, while the remaining 30% were used for model validation. In
this investigation, the algorithm iterations maximum number was 500, with the choice of
model replicate set to 10 (maximum entropy). The 10 model replicate option yields average
habitat suitability maps for P. khinjuk and P. eurycarpa. To account for the species’ presence
records (n = 78 and n = 57, respectively), the background points were adjusted to 570 [30].
The multiplier of regularization was adjusted to 1 [34]. Tuning the regularization multiplier
may change how complicated or simple the model is. For example, raising the number
above one makes the model simpler, while lowering the value below one makes the model
more complex [58]. The jackknife test was also used, for assessing the factors’ relative
significance and contributions to the likelihood of distribution of species’ habitats [59].
Additionally, from 10 model outputs (10 repetitions) the value of average (i.e., the value of
the threshold) was utilized to define the likelihood of unsuitable distribution and habitat
suitability for these species (occurrences probability) [60]. For P. eurycarpa and P. khinjuk dis-
tribution, pixels with values equal to or greater than 0.3 were deemed appropriate regions,
whilst pixels with values lower than 0.3 were considered unsuitable areas. According to
these threshold values, the suitability maps for the two species were classified as follows:
high suitability (0.67–0.89), medium suitability (0.45–0.67), low suitability (0.3–0.45), and
unsuitable (0–0.3) [61] (Figure 3). The ArcGIS 10.3 platform’s spatial analysis toolbox was
employed to conduct these operations.
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2.5. Model Evaluation

One of the most common evaluation metrics for the presence–dependent modeling
approach is the area under the curve (AUC). The AUC is one of the most extensively
utilized tools to evaluate a model’s discriminatory power that assesses how well the model
outputs discriminate between locations where observations are present and absent [8]. The
AUC values range from 0 to 1. The performance of the model has been divided into the
following ranges: outstanding (0.9–1), very good (0.8–0.9), decent (0.7–0.8), acceptable
(0.6–0.7), and bad (0.5–0.6) [62]. Other metrics, such as TSS [63], are often used in similar
studies, however, TSS and AUC are highly correlated.

2.6. Analysis of the Distribution Change between the Habitat of the Present and Future for the Species

To estimate the transition between the present and future habitat distributions, several
spatial techniques in the ArcGIS platform were deployed. Four categories were utilized
to categorize the changes in distribution for the species in the KRI: (1) no change (i.e., it
is inhabited by the species at the moment, and it is still occupied throughout time frames
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2041–2060, 2061–2080, and 2081–2100 years); (2) no occupancy (i.e., the locations that
are unsuitable now and that will remain unsuitable in the future); (3) expansion of the
range (i.e., future habitats that will be suited to the species); and (4) contraction of the
range (i.e., future regions that will be lost for every species). For the species over its range
(i.e., geographical extent), the centroid was estimated to provide a clear understanding of
the changes in distribution between the scenarios of the present and the future. Therefore,
the study was carried out using SDMtoolbox, a GIS tool created by Brown, Bennett and
French [56], to identify the centroid of the distribution changes in the suitable areas with
attributes on the magnitude and direction, by condensing the geographical extent of the
presence recordings to a single location (spatial mean).

3. Results
3.1. Performance of the Model

For P. khinjuk and P. eurycarpa, the AUC values of the model’s performance were
0.853 and 0.846, respectively, and the first species showed a stronger discriminatory power
in the outputs of the model. Under the chosen environmental circumstances, for the two
species, the likelihood of the distributions of habitat suitability as a whole showed a logical
effectiveness.

3.2. Distributions of the Habitat in the Present and Future for P. khinjuk and P. eurycarpa

The simulations derived from the MIROC-ES2L and BCC-CSM2-MR climate models,
for instance, reveal that the range of P. eurycarpa will change from its existing distribution
under the SSP 585, 245 and 126 scenarios, during the periods 2041–2060, 2061–2080, and
2081–2100. Particularly, at the cost of the unsuitable sites, the species will gain some terri-
tory (grow in certain places). In the BCC-CSM2-MR models, the unsuitable regions grew
the most by 3328 km2 (6.5%) under the SSP 245/2041–2060. While the SSP 585/2041–2060
had the largest area drop, by 605 km2 (1.18%). Additionally, it is anticipated that the
previously acceptable regions will fluctuate in size depending on where they are located
(habitat shift). For instance, it is predicted that the category of high suitability will de-
cline in every utilized scenario, but that the overall classes of habitat suitability (i.e., high
suitability, medium, and the sum of the low suitability areas) will enhance in all but the
SSP245 scenario, which is predicted to decline in the 2041–2060 time period, from the recent
10,443 km2 (20.43%) to 7115 km2 (13.92%). However, it is anticipated that in all the appli-
cable situations, employing the MIROC-ES2L models, both categories of high suitability
and habitat unsuitability will diminish. However, for each scenario, the overall classes of
suitability (i.e., the high suitability, medium, and the total of the low suitability areas) will
rise (Tables A2 and A3; Figures 4 and 5).

Both of the models of the climate show a dynamic shift in the ranges for P. khinjuk as
well. The two models reveal shifts in the trend of habitat unsuitability, and most classes of
overall suitability are anticipated to rise under future climate scenarios. For instance, SSP
245/2061–2080 shows the biggest rise in habitat unsuitability under the BCC-CSM2-MR
models by 745 km2 (1.45%), whereas SSP 245/2041–2060 shows the greatest reduction in
habitat unsuitability by 505 km2 (0.99%). With the exception of SSP 585/2081–2100, and
SSP126, 245/2061–2080, all the applied scenarios predict an increase in the total suitability
classes, whereas the former scenarios predicted a decrease from 9230 km2 (18.06%) in the
present to 8799 km2 (0.84%), and 8986 km2 (0.47%) to 8484 km2 (1.45%), in the future.
The modeling of the MIROC-ES2L results also revealed a progressive shift in P. khinjuk’s
distribution. For instance, all of the applicable scenarios expect a reduction in habitat
unsuitability, with the exception of SSP 245/2041–2060, which predicts an increase of
192 km2 (0.37%). However, all scenarios predict a rise in the overall classes of suitability
(i.e., the total of the high, medium, and low suitability regions), with the exception of SSP
245/2041–2060, which predicts a decline from the present 9230 km2 (18.06%) to the future
9037 km2 (17.69%) (Tables A7 and A8; Figures 6 and 7). In conclusion, the BCC-CSM2-MR
model shows that the mean of all the eligible habitats will grow for P. khinjuk, but contract
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for P. eurycarpa. The MIROC-ES2L model, however, shows that the mean of the total amount
of habitat that is appropriate for both species will increase.
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3.3. Analysis of the Distribution Change between the Present and Future Habitats for P. khinjuk
and P. eurycarpa

For both species, the habitat ranges were shown to undergo geographic distributional
change (i.e., both expansion and contraction), as a result of climatic changes in the time
frames 2041–2060, 2061–2080, and 2081–2100, using MIROC-ES2L and BCC-CSM2-MR
models. Both models demonstrated that the total expansion magnitude was larger than
the total contraction magnitude. The average expansion range for P. eurycarpa will be
1929 km2 (3.776%) and 1793 km2 (3.508%), under all the scenarios used. Additionally, for
the two models, the average shrinkage is predicted to be 1304 km2 (2.553%) and 1657 km2

(3.244%), respectively (Tables A1 and A2). The average expansion range for P. khinjuk will
be 2084 km2 (4.079%) and 1783 km2 (3.49%), for all of the applicable scenarios, whereas
the average contraction is anticipated to be 1354 km2 (2.65%) and 1698 km2 (3.325%),
respectively, for both models (Tables A3 and A4; Figure 8).
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for two species in future climates. Note: the maps illustrate only the expansion trend results for the
species’ habitat changes. (a,b) Figures show P. eurycarpa’s future expansion, while (c,d) figures show
P. khinjuk’s future expansion.

3.4. The Direction and Degree of the Distributional Change for P. eurycarpa and P. khinjuk

The geographic coordinates for the two species are now at 35◦91′40′ ′ north and
45◦13′50′ ′ east, and 35◦95′40′ ′ north and 45◦06′40′ ′ east. Nevertheless, this centroid al-
ters in the following ways under the scenarios of climate change: for P. eurycarpa, all of
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the BCC-CSM2-MR scenarios predict a southeastward relocation of an average 8.51 km.
This centroid, however, alters across the different climate change scenarios as follows:
the majority of the MIROC-ES2L scenarios show a similar shift result toward the south-
east, with the exception of SSP 585 (2061–2080), SSP 585 and SSP 245 (2081–2100), which
are expected to shift 45◦05′70′ ′ east and 35◦93′60′ ′ north southwest, 44◦97′80′ ′ east and
35◦96′90′ ′ north northwest, and 45◦02′20′ ′ east and 35◦96′40′ ′ north northwest, respec-
tively. However, P. khinjuk’s centroid change findings were not significantly different from
P. eurycarpa’s. The centroid moved an average of 8.63 km toward the southeast, as predicted
by the BCC-CSM2-MR scenarios. Except for SSP 126 (2041–2060), SSP 126 (2061–2080),
and SSP 585 (2081–2100), which were relocated toward 35◦92′90′ ′ north and 45◦06′80′ ′ east
northwest, 35◦89′90′ ′ north and 45◦13′30′ ′ east south, and 35◦97′50′ ′ north and 45◦00′40′ ′

east northwest, respectively, the majority of the MIROC-ES2L scenarios projected toward
the southeast (Figure 9).

1 

 

 

Figure 9. Change density (magnitude) of the distribution and the centroid (core) direction of
P. eurycarpa (left) and P. khinjuk (right). The arrowhead = the distribution change direction under the
given scenarios. The time windows of 2041–2060, 2061–2080, and 2081–2100 are shown in black, blue,
and yellow color arrows in the figure, respectively.

3.5. Environmental Factors’ Relative Relevance and Contribution to the Spread of P. eurycarpa and
P. khinjuk

Four out of the five crucial factors that affect the likelihood of habitat distribution in
the KRI are shared by both species. P. eurycarpa contributed to the following variables as
follows: precipitation of the wettest month (Bio13) (32.2%), DEM (24.5%), soil type (16.2%),
soil carbon (8.2%), and Geo (6.3%) (collectively 87.4). The least significant contributions
were made by soil moisture, annual precipitation (Bio12), soil pH, temperature annual mean
(Bio1), slope, and the range of mean diurnal (Bio2). Meanwhile, for P. khinjuk, the most
significant variables were as follows: precipitation of the wettest month (Bio13) (35.2%),
DEM (16.8%), soil type (i.e., Chromic Vertisols, lithosols, and Calcic Xerosols) (16.7%),
the mean diurnal range (Bio2) (11.7%), and soil carbon (10.4%) (collectively 90.8). The
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maximum temperature of the hottest month (Bio5), the annual precipitation (Bio12), soil
pH, soil moisture, slope, and geo made the lowest relative contributions.

The MaxEnt model illustrated the relative impact of factors from the jackknife analysis
on the two species under the present conditions. According to the jackknife test for
regularizing the AUC variable gains and training gains (%), the precipitation of the soil
carbon, soil type, annual precipitation (Bio12), DEM, annual mean temperature (Bio1), and
wettest month (Bio13) included more information (gains) in the P. eurycarpa distribution
compared to the rest of variables. For P. khinjuk, the variables soil carbon, soil type, and
DEM included larger increases in distribution than the wettest month (Bio13), the annual
precipitation(Bio12), the maximum temperature of the hottest month (Bio5), and the other
factors (Figure 10).
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4. Discussion
4.1. Species of Tree Plant Respond Differently to the Scenarios of the Future Climate

One of the most urgent environmental challenges confronting mankind at the moment
is global climate change. The average worldwide surface air temperature rose by 0.76 ◦C
between 1850 and 2005. This indicates a trend of warming in the past 50 years of 0.13 ◦C
per decade [28]. Between 2030 and 2052, if global warming keeps at its present pace,
there will likely be a 1.5 ◦C increase [64]. Many plants are anticipated to adapt to the
rapid temperature rise and spread to new areas. Climatic change has had a substantial
impact on species distribution and abundance during the last several decades, and under
future climate scenarios, it also causes species extinction, a shift in demography, a shift
in phenology, expansion, contraction, and differences in growth and productivity [65].
According to Monzón, et al. [66], species ranges related to climate change are likely to
grow or contract, and some species may even need to relocate to take advantage of new
environments. According to earlier research, species contraction and plant habitat loss were
anticipated to occur in the KRI [67], Africa [68], and California [69]. Different plant species
also react differently to the predicted climatic circumstances. Nevertheless, other research,
has indicated that, in several countries, including the Marion Island [70], Spain [71], the
southern United States [72], and Indonesia [73], plant species’ habitats are expanding due
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to anticipated climate change. Our results also indicate that under the two GCMs, the
BCC-CSM2-MR and the MIROC-ES2L models, and for the majority of the SSP climate
change scenarios, the overall habit range of both species would expand. For the two GCMs
the species habitat range would overlap by 8812 km2 (17.25%) and 9177 km2 (17.96%),
respectively. The modeling revealed a total habitat suitability rise over a habitat suitability
decline in the future circumstances. The modeling of BCC-CSM2-MR, for instance, under
scenarios of SSP 245/2041–2060 and SSP 585/2041–2060, presented the maximum gain in
habitat suitability for P. khinjuk and P. eurycarpa. Both species’ habitat appropriateness is
predicted to move from the present 9230 km2 (18.06%) to the future 9735 km2 (19.05%), and
from the present 10,442 km2 (20.43%) to the future 11,047 km2 (21.61%), respectively. In
a similar way, the scenarios of the MIROC-ES2L modeling for the two species resulted in
a comparative finding regarding habitat suitability gain. P. khinjuk is predicted to expand
from the current 9230 km2 (18.06%) to 10,769 km2 (21.07%) under SSP 585/2081–2100, in the
future; whereas, P. eurycarpa, under SSP 585/2081–2100 was seen to move from the current
10,442 km2 (20.43%) to 11,210 km2 (21.94%) in the future (Tables A1 and A2). Moreover,
the expansion of eminent habitat (the expansion–contraction net percentage) findings are
predicted to increase in both modeling scenarios, MIROC-ES2L and BCC-CSM2-MR. The
expansion in BCC-CSM2-MR will be as follows: P. khinjuk expands by 504 km2 (0.986%)
under SSP 245/2041–2060 and P. eurycarpa grows by 606 km2 under SSP 585/2041–2060
(1.186%); whereas, P. khinjuk expands by 1539 km2 (3.012%) under SSP 585/2081–2100
and P. eurycarpa expands by 1683 km2 (3.294%) under SSP 245/2081–2100, when using
MIROC-ES2L modeling scenarios (Tables A3 and A4).

Kozhoridze et al. [1] showed the same findings for the expansion of both species
of Pistacia, in which they investigated Pistacia globally under future climate conditions
between 2050 and 2100. Similarly, the eucalyptus spread in the 2050 and 2070 periods
has been predicted by López-Sánchez, Castedo-Dorado, Cámara-Obregón and Barrio-
Anta [71]. With regards to the tables resulting from the applied models and according to
the centroid and distribution shift maps, for the Pistacia modeling in the KRI, utilizing
MIROC-ES2L seems to be more appropriate compared to BCC-CSM2-MR. The MIROC-
ES2L model predicts a greater growth and distribution range for the both species under
the scenarios of the future climate. Moreover, the model indicated a considerable variety
in the centroid shifts, which fits with the geography and the habitat characteristics of the
research region. Moreover, according to the MIROC-ES2 scenarios, the future climate
changes will insignificantly influence the amount of precipitation in the wettest months,
which makes the greatest contribution to the distribution of both species in the current and
future conditions (Table 2).

Table 2. The wettest month’s precipitation varies depending on the present and the future conditions.
Only the scenarios with the biggest growth ranges for the two species were selected.

Precipitation of Wettest
Month (Bio13) Current

P. khinjuk P. eurycarpa
BCC-CSM2-MR MIROC-ES2L BCC-CSM2-MR MIROC-ES2L

SSP 245 SSP 585 SSP 585 SSP 245
(2041–2060) (2081–2100) (2041–2060) (2081–2100)

Lowest 58 55 56 55 55
Highest 200 174 198 181 193

4.2. Edaphic and Environmental Variables Contributed to the Expansion and Distribution of the
P. khinjuk and P. eurycarpa in the Future Climatic Scenarios

The major environmental factors that affected both species are the precipitation in the
wettest month (Bio13) (32.2%; 35.2%), DEM (24.5%; 16.8%), and soil type (16.2%; 16.7%)
(Figure 11). These outcomes were anticipated and justified in light of the research area’s
geography, the seasonal change in precipitation, and the kind of soil. In the mountains
of Zagros in the KRI, the two species have evolved to live on sandstone hills, steep dry
slopes, and stony hillsides. The Zagros Mountains are characterized by significant seasonal
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variations in temperature and precipitation, with dry summers and wet winters. The
mountains of the KRI might get 1200 mm of precipitation annually, the most of which falls
from October to May, the wettest months [40]. According to predictions on future climatic
circumstances, the eco-regional features of the research area will make it ideal for the
spread and growth of Pistacia. Additionally, P. khinjuk’s strong resistance to osmotic stress
and drought, which provide the plant with more moisture and regulate temperature and
precipitation rates, improve the plants’ ability to follow climatic change and survive aridity,
according to [28]. As the most significant variable amongst other the variables, the results of
Bio13 confirm the research conclusions. The predictions for Bio13 (i.e., the extracted layers
of the map), which were employed in this work, are not anticipated to vary much in future
climatic scenarios (especially in the mountainous regions of the KRI). The present range of
the wettest month’s anticipated precipitation is between 58 mm (the lowest) to 200 mm (the
highest). Pistacia can effectively monitor climate change in the area since these values are
not anticipated to vary considerably in the future climatic scenarios (Table 2). Despite these
realities, P. khinjuk is expected to spread further in the mountainous region due to climate
change. This indicates how the species’ high tolerance aids the plant’s ability to withstand
summertime heat and aridity on the Zagros Mountains’ stony slopes. Such findings
support [28] findings that P. khinjuk grows better in high-altitude and dry environments.
Similar justifications apply to P. eurycarpa as well, for two reasons: (i) both species share four
out of five of the most significant variables that alter their potential distribution (Figure 11);
and (ii) they usually coexist in most of the environments investigated in the field study
(Figure 1). An additional factor that considerably influenced the spread of these two species
was elevation. Elevation (or height) has been identified in several studies as a crucial
element influencing the dispersion and growth of plants [74,75]. A piece of Marion Island
research stated that 18 plant species reportedly expanded their ranges by about 70 m in
altitude between 1966 and 2006, as a reaction to rising temperatures [70]. Moreover, the
third factor influencing the dispersion of Pistacia was soil type. The distribution of the two
species was influenced most by Chromic Vertisols, lithosols, and Calcic Xerosols, among
the 19 categories of soil type. These soil types cover a region of around 23,021 km2 (45%) in
the overall research area, according to the retrieved soil type map layer (Table 3). These
soil types are described in the FAO classification system as follows: Vertisols are swelling
and shrinking clayey soils which occur in (sub) tropical areas with an expressed dry season
and are dominated by expanding 2:1 lattice clays. The very shallow lithosols occur in the
most eroding positions of the landscape and are less than 10 cm thick. While, the Xerosols
are characterized by an aridic soil (having an aridic but not cold climate) and moderate
contents of organic matter in the topsoil [76].
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Table 3. Distribution of soil types by percentage in the KRI study area.

Value Legend FAOSOIL Area Area in %

1 Lithosol I-Rc-Xk-c 5842.2 11.4
3 Lithosol I-Be-c 515.4 1.0
4 Chromic Luvisols Lc63-3bc 11.9 0.0
6 Calcic Xerosols Xk5-3ab 101.1 0.2
7 Haplic Xerosols Xh31-3a 30.7 0.1
9 Chromic Vertisols Vc1-3a 9547 18.7
11 Haplic Xerosols Xh33-3a 29.7 0.1
12 Chromic Vertisols Vc50-3ab 2041 4.0
14 Lithosol I-E-bc 8516 16.7
16 Lithosol I-E-Xk-bc 5331 10.4
18 Calcic Xerosols Xk29-ab 440 0.9
19 Calcic Xerosols Xk26-2/3a 1065 2.1
20 Gypsic Xerosols Xy5-a 1023 2.0
21 Calcic Xerosols Xk28-b 12,464 24.4
22 Calcic Xerosols Xk9-2/3a 586 1.1
23 Calcaric Fluvisols Jc1-2a 462 0.9
24 Gypsic Yermosols Yy10-2ab 259 0.5
25 Gypsic Yermosols Yy10-2/3a 2473 4.8
29 Calcic Yermosols Yk34-b 359 0.7

To analyze the environmental drivers of species distribution and to project the species’
realized niche in a geographic area, SDMs can be utilized. The SDMs accuracy is affected
by several predictors: (i) biological: presence or absence of the species; (ii) climatic: climate
and vegetation; (iii) geological: topography, land cover types, soil and geology; and
(iv) human activities: agriculture, deforestation, and land cover damage [77]. Therefore,
researchers tend to consider habitat selection and other factors that influence species
distribution [78]. Important limiters of SDMs involve the type of environmental gradients
and multiple predictors, such as: the physical environment [79], a lack of biologically
relevant information [80], invasive species and biotic interactions [81], and insufficient
data [82]. In addition, among other factors that cause uncertainty in SDM output are
data deficiencies (e.g., small and biased samples of species occurrences) and errors in the
specification of the model [30]. Environmental gradients are among the other factors that
influence SDM results, for example, direct gradients which have a direct physiological
effect on species growth (temperature, pH, water, and nutrients), and indirect gradients,
which result from location-specific correlations (elevation and latitude) [83].

To minimize the uncertainties in SDM outputs, categorizing the habitat suitability of
the studied area might be useful. Land suitability provides decision makers with a good
insight to develop management strategy. In this study, habitat suitability was categorized
into several layers, as follows: high suitability, medium suitability, low suitability, and un-
suitable. These categorized layers represent how the climatic and edaphic factors influence
the absence and presence of the species.

4.3. Implications for Ecological Conservation

Through the protection and management of biological resources, conservation policy
aims to provide a sustainable environment for the diverse range of species found across the
globe without seriously compromising important habitats and ecosystems. Distribution,
collection, storage, propagation, assessment, characterization, disease indexing, and disease
removal are all part of conservation [84,85]. In the present and future climate situations, for
conservation reasons, it is crucial to be aware of the possible range of a species. Therefore,
some technologies (including global positioning systems (GPS), geographic information
systems (GIS), SDMs, sampling schemes, and measurement methodologies are outstanding
instruments to analyze the spatio-temporal dynamics and the complex processes that
govern biodiversity. The vast array of remote sensing satellite data with their various



Sustainability 2023, 15, 5469 17 of 25

spatio-temporal resolution changes might be beneficial for biodiversity assessment [86].
Geospatial methods and ecological modeling are used in this study for forecasting and
estimating the species distribution ranges. In particular, the incorporation of MaxEnt
into the GIS environment has a significant function in enhancing conservation planning
development and the input data [87].

Approximately 10,219 km2 (20%) of the whole research area is predicted to be favorable
for the distribution and development of the two species, according to the majority of the
models’ findings. The results of the modeling map indicate that the two species’ medium
and high suitability habitats for distribution are found in the mountainous area. The
ecological, medicinal, nutritional, and cultural relevance of the Pistacia species, as well
as their rarity in high altitudinal areas might benefit the KRI’s forestry management.
Additionally, the attention of environmentalists and conservationists should be encouraged
to monitor climate change and help withstand prolonged dry spells. Consequently, the
following are firmly proposed: (i) Pistacia has to be preserved and protected, especially in
the overlapping areas 9177 km2 (17.96%) for the MIROC-ES2L and 8812 km2 (17.25%) for
the BCC-CSM2-MR models (Figure 12), from anthropogenic activities, including burning,
cutting and the overuse of plants; and (ii) these species depend on rocky mountain peaks
and slope habitats (mostly the unchanged suitable areas), which are crucial ecosystems and
should be prioritized by conservation efforts.
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among the 18 overlap results for P. khinjuk and P. eurycarpa in the KRI.

Regarding GPS data point collections and the plant specimen, this research had certain
limitations. The biggest limitation was the problem of accessibility in some locations,
especially in the east and north border areas where landmines have been planted or
political tensions existed.

5. Conclusions

The two Pistacia species’ existing and future distributions in the KRI were estimated
as part of this study’s goal, which also included developing forest management strategies.
Under the present environmental conditions, tree plants of P. khinjuk and P. eurycarpa cover
around one fifth of the whole research area. The species attracted the attention of this
study due to its cultural, medicinal, and ecological significance, and its tolerance to living
in the rocky and mountainous highlands. The steep and rocky slopes of the Kurdistan
Mountains are ideal sites for the development and spread of Pistacia species. The three main
variables that affected these two species distributions were precipitation during the wettest
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month (Bio13), DEM, and soil type. The entire habitat range of the species is anticipated
to grow in the future scenarios of climate change, and the centroid is most likely going
to migrate to the southeast. The highlands and overlapping ecosystems should be given
priority in management plans and conservation measures. Thus, the classified present and
prospective species distribution maps that have been developed in this work, especially
the overlapping maps, provide invaluable planning insights for safeguarding the Pistacia
species in the area. No prior research has modeled the geographic distribution of these two
species under the existing and future climates in the KRI, according to the already available
information. Geospatial techniques combined with correlation-based modeling are efficient
tools for predicting the spatial patterns of the tree species in the mountain ecosystem. The
expanded future habitat ranges particularly the overlapping areas, preferably between
1500 and 3500 masl., should be prioritized in conservation and management actions.
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Table A1. Changes in the distribution of the habitat range (areas) for P. eurycarpa in the present and
future under the scenarios of climate change, BCC-CSM2-MR, SSP 585, 245, and 126 for 2041–60,
2061–80, and 2081–2100, respectively. The total area of the study equals 51,097 km2 which is also
shown in percentage below each category.

Year Class Range Expansion No Occupancy
(Absence in Both)

No Change (Presence
in Both)

Range
Contraction

(2041–2060)

SSP 126 area (km2) 1659 38,996 9050 1392
% 3.26 76.32 17.70 2.72

SSP 245 area (km2) 1724 38,931 9128 1314
% 3.38 76.20 17.86 2.56

SSP 585 area (km2) 1893 38,762 9157 1285
% 3.71 75.87 17.91 2.51

(2061–2080)

SSP 126 area (km2) 1978 38,677 8559 1883
% 3.88 75.70 16.74 3.68

SSP 245 area (km2) 1933 38,722 8057 2385
% 3.79 75.79 15.76 4.66

SSP 585 area (km2) 1718 38,937 9080 1362
% 3.37 76.21 17.76 2.66

(2081–2100)

SSP 126 area (km2) 1637 39,018 8993 1449
% 3.21 76.37 17.59 2.83

SSP 245 area (km2) 2111 38,544 8763 1679
% 4.14 75.44 17.14 3.28

SSP 585 area (km2) 1489 39,166 8278 2164
% 2.92 76.66 16.19 4.23

Table A2. Changes in the distribution of the habitat areas (range) for P. eurycarpa in the present and
future under scenarios of climate change, MIROC-ES2L, SSP 585, 245, and 126 for 2041–60, 2061–80,
and 2081–2100, respectively. The total area of the study equals 51,097 km2 which is also shown in
percentage below each category.

Year Class Range Expansion No Occupancy
(Absence in Both)

No Change (Presence
in Both)

Range
Contraction

(2041–2060)

SSP 126 area (km2) 1658 38,997 8916 1526
% 3.25 76.33 17.44 2.98

SSP 245 area (km2) 1744 38,911 9030 1412
% 3.42 76.16 17.66 2.76

SSP 585 area (km2) 1556 39,099 9135 1307
% 3.05 76.53 17.87 2.55

(2061–2080)

SSP 126 area (km2) 1855 38,800 9169 1273
% 3.64 75.94 17.94 2.48

SSP 245 area (km2) 2045 38,610 9023 1421
% 4.01 75.57 17.65 2.77

SSP 585 area (km2) 1897 38,758 9268 1174
% 3.72 75.86 18.13 2.29

(2081–2100)

SSP 126 area (km2) 1753 38,901 9238 1205
% 3.44 76.14 18.07 2.35

SSP 245 area (km2) 2845 37,810 9283 1160
% 5.58 74 18.16 2.26

SSP 585 area (km2) 2025 38,630 9185 1257
% 3.97 75.61 17.97 2.45
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Table A3. Changes in the distribution of the habitat areas (range) for P. khinjuk in the present and
future under scenarios of climate change, BCC-CSM2-MR, SSP 585, 245, and 126 for 2041–60, 2061–80,
and 2081–2100, respectively. The total area of the study equals 51,097 km2 which is also shown in
percentage below each category.

Year Class Range Expansion No Occupancy
(Absence in Both)

No Change (Presence
in Both)

Range
Contraction

(2041–2060)

SSP 126 area (km2) 2044 39,824 7536 1693
% 4.01 77.95 14.74 3.31

SSP 245 area (km2) 1833 40,035 7902 1327
% 3.60 78.36 15.46 2.59

SSP 585 area (km2) 1913 39,955 7771 1458
% 3.75 78.20 15.20 2.85

(2061–2080)

SSP 126 area (km2) 1551 40,317 7437 1792
% 3.04 78.91 14.55 3.50

SSP 245 area (km2) 1762 40,106 6727 2502
% 3.46 78.50 13.16 4.89

SSP 585 area (km2) 1666 40,202 7750 1479
% 3.27 78.69 15.16 2.89

(2081–2100)

SSP 126 area (km2) 1786 40,082 7741 1488
% 3.50 78.45 15.14 2.90

SSP 245 area (km2) 2075 39,793 7544 1685
% 4.07 77.89 14.76 3.29

SSP 585 area (km2) 1431 40,437 7370 1859
% 2.81 79.15 14.42 3.63

Table A4. Changes in the distribution of the habitat areas (range) for P. khinjuk in the present and
future under scenarios of climate change, MIROC-ES2L, SSP 585, 245, and 126 for 2041–60, 2061–80,
and 2081–2100, respectively. The total area of the study equals 51,097 km2 which is also shown in
percentage below each category.

Year Class Range Expansion No Occupancy
(Absence in Both)

No Change (Presence
in Both)

Range
Contraction

(2041–2060)

SSP 126 area (km2) 2241 39,627 7876 1353
% 4.39 77.56 15.41 2.64

SSP 245 area (km2) 1533 40,335 7511 1718
% 3.01 78.95 14.69 3.35

SSP 585 area (km2) 1780 40,088 7909 1320
% 3.49 78.46 15.47 2.58

(2061–2080)

SSP 126 area (km2) 1891 39,977 7902 1327
% 3.71 78.25 15.46 2.59

SSP 245 area (km2) 2154 39,714 7857 1372
% 4.22 77.73 15.37 2.68

SSP 585 area (km2) 2002 39,867 7985 1243
% 3.93 78.03 15.62 2.42

(2081–2100)

SSP 126 area (km2) 1883 39,985 8054 1175
% 3.69 78.26 15.75 2.29

SSP 245 area (km2) 2445 39,423 7853 1376
% 4.79 77.16 15.36 2.68

SSP 585 area (km2) 2839 39,029 7931 1298
% 5.56 76.39 15.51 2.53
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Table A5. Modeled habitat of the present and future areas of unsuitability and suitability distribution
(in percentage) using model BCC-CSM2-MR under scenarios SSP 585, 245, and 126 climate change
for P. eurycarpa for the years 2041–60, 2061–80, and 2081–2100, respectively. The total area of the study
equals 51,097 km2 which is also shown in percentage below each category.

Year Class Unsuitable Low Suitability Medium Suitability High Suitability

Current
Area (km2) 40,656 5032 4203 1208

% 79.57 9.86 8.23 2.38

(2041–2060)

SSP 126 area (km2) 40,391 5270 4469 969
% 79.06 10.32 8.75 1.89

SSP 245 area (km2) 43,984 1538 4623 954
% 86.09 3.02 9.06 1.86

SSP 585 area (km2) 40,051 5206 4902 940
% 78.39 10.20 9.60 1.83

(2061–2080)

SSP 126 area (km2) 40,566 4922 4496 1115
% 79.40 9.64 8.81 2.17

SSP 245 area (km2) 41,109 4141 4820 1029
% 80.46 8.11 9.42 2.01

SSP 585 area (km2) 40,299 5349 4555 896
% 78.88 10.48 8.92 1.75

(2081–2100)

SSP 126 area (km2) 40,468 5146 4589 896
% 79.21 10.08 8.99 1.75

SSP 245 area (km2) 40,226 4676 5163 1034
% 78.73 9.16 10.11 2.02

SSP 585 area (km2) 41,330 5000 3868 901
% 80.89 9.79 7.58 1.76

Table A6. Modeled habitat of the present and future areas of unsuitability and suitability distribution
(in percentage) under SSP 585, 245, and 126 climate change scenarios using the MIROC-ES2L model
for P. eurycarpa for the years 2041–60, 2061–80, and 2081–2100, respectively. The total area of the study
equals 51,097 km2 which is also shown in percentage below each category.

Year Class Unsuitable Low Suitability Medium Suitability High Suitability

Current
Area (km2) 40,656 5032 4201 1208

% 79.57 9.86 8.21 2.36

(2041–2060)

SSP 126 area (km2) 40,523 5220 4415 939
% 79.31 10.22 8.63 1.83

SSP 245 area (km2) 40,325 5347 4507 918
% 78.93 10.47 8.81 1.79

SSP 585 area (km2) 40,408 5357 4427 905
% 79.09 10.49 8.66 1.76

(2061–2080)

SSP 126 area (km2) 40,073 5469 4703 852
% 78.43 10.71 9.20 1.66

SSP 245 area (km2) 40,031 5217 4859 990
% 78.35 10.22 9.50 1.93

SSP 585 area (km2) 39,932 5454 4777 934
% 78.16 10.68 9.34 1.82

(2081–2100)

SSP 126 area (km2) 40,107 5429 4628 933
% 78.50 10.63 9.05 1.82

SSP 245 area (km2) 38,974 5521 5397 1205
% 76.28 10.81 10.55 2.35

SSP 585 area (km2) 39,888 5693 4547 969
% 78.07 11.15 8.89 1.89
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Table A7. Modeled habitat of the present and future areas of unsuitability and suitability distribution
(in percentage) under SSP 585, 245, and 126 climate change scenarios using the BCC-CSM2-MR model
for P. khinjuk for the years 2041–60, 2061–80, and 2081–2100, respectively. The total area of the study
equals 51,097 km2 which is also shown in percentage below each category.

Year Class Unsuitable Low Suitability Medium Suitability High Suitability

Current
Area (km2) 41,868 4308 3771 1150

% 81.95 8.44 7.37 2.24

(2041–2060)

SSP 126 area (km2) 41,518 4811 4153 615
% 81.26 9.42 8.12 1.20

SSP 245 area (km2) 41,363 5048 4084 602
% 80.96 9.89 8 1.19

SSP 585 area (km2) 41,420 4808 4201 668
% 81.07 9.42 8.21 1.30

(2061–2080)

SSP 126 area (km2) 42,111 4269 3905 812
% 82.42 8.36 7.63 1.58

SSP 245 area (km2) 42,613 3854 3819 811
% 83.40 7.55 7.47 1.58

SSP 585 area (km2) 41,682 4838 3942 635
% 81.58 9.48 7.71 1.23

(2081–2100)

SSP 126 area (km2) 41,575 4700 4211 611
% 81.37 9.21 8.23 1.21

SSP 245 area (km2) 41,484 4610 4315 688
% 81.19 9.03 8.44 1.34

SSP 585 area (km2) 42,298 4331 3714 754
% 82.79 8.48 7.26 1.47

Table A8. Modeled habitat of the present and future areas of unsuitability and suitability distribution
(in percentage under SSP 585, 245, and 126 climate change scenarios) using the MIROC-ES2L model
for P. khinjuk for the following years 2041–60, 2061–80, and 2081–2100, respectively. The total area of
the study equals 51,097 km2 which is also shown in percentage below each category.

Year Class Unsuitable Low Suitability Medium Suitability High Suitability

Current
Area (km2) 41,868 4308 3771 1150

% 81.95 8.44 7.37 2.24

(2041–2060)

SSP 126 area (km2) 40,984 4568 4204 1341
% 80.22 8.95 8.22 2.62

SSP 245 area (km2) 42,060 4159 4108 770
% 82.32 8.15 8.03 1.50

SSP 585 area (km2) 41,409 4944 4038 706
% 81.05 9.68 7.89 1.37

(2061–2080)

SSP 126 area (km2) 41,305 4920 4306 566
% 80.84 9.64 8.42 1.10

SSP 245 area (km2) 41,087 4975 4445 590
% 80.42 9.74 8.69 1.15

SSP 585 area (km2) 41,110 5011 4181 795
% 80.44 9.81 8.17 1.55

(2081–2100)

SSP 126 area (km2) 41,163 4987 4224 723
% 80.57 9.77 8.26 1.41

SSP 245 area (km2) 40,800 5524 4169 604
% 79.86 10.82 8.15 1.17

SSP 585 area (km2) 40,329 5407 4246 1115
% 78.93 10.59 8.30 2.17



Sustainability 2023, 15, 5469 23 of 25

References
1. Kozhoridze, G.; Orlovsky, N.; Orlovsky, L.; Blumberg, D.G.; Golan-Goldhirsh, A. Geographic distribution and migration pathways

of Pistacia–present, past and future. Ecography 2015, 38, 1141–1154. [CrossRef]
2. AL-Saghir, M.G.; Porter, D.M. Taxonomic revision of the genus Pistacia L. (Anacardiaceae). Am. J. Plant Sci. 2011, 3, 12–32.

[CrossRef]
3. Guest, E.; Townsend, C. Flora of Iraq; Ministry of Agriculture of the Republic of Iraq: Baghdad, Iraq, 1966.
4. Ahmed, H.M. Traditional uses of Kurdish medicinal plant Pistacia atlantica subsp. kurdica Zohary in Ranya, Southern Kurdistan.

Genet. Resour. Crop Evol. 2017, 64, 1473–1484. [CrossRef]
5. Rankou, H.; M’sou, S.; Babahmad, R.A.; Ouhammou, A.; Alifriqui, M.; Martin, G. Pistacia atlantica. In The IUCN Red List of

Threatened Species; IUCN red list: Cambridge, UK, 2018.
6. Khwarahm, N.R. Spatial modeling of land use and land cover change in Sulaimani, Iraq, using multitemporal satellite data.

Environ. Monit. Assess. 2021, 193, 148. [CrossRef]
7. Khwarahm, N.R.; Najmaddin, P.M.; Ararat, K.; Qader, S. Past and future prediction of land cover land use change based on earth

observation data by the CA–Markov model: A case study from Duhok governorate, Iraq. Arab. J. Geosci. 2021, 14, 1544. [CrossRef]
8. Khwarahm, N.R.; Qader, S.; Ararat, K.; Al-Quraishi, A.M.F. Predicting and mapping land cover/land use changes in Erbil/Iraq

using CA-Markov synergy model. Earth Sci. Inform. 2021, 14, 393–406. [CrossRef]
9. Khwarahm, N.R. Modeling forest-shrubland fire susceptibility based on machine learning and geospatial approaches in mountains

of Kurdistan Region, Iraq. Arab. J. Geosci. 2022, 15, 1184. [CrossRef]
10. Nasser, M. Forests and forestry in Iraq: Prospects and limitations. Commonw. For. Rev. 1984, 63, 299–304.
11. Javanshah, A. Global warming has been affecting some morphological characters of pistachio trees (Pistacia vera L.). Afr. J. Agric.

Res. 2010, 5, 3394–3401.
12. Hama, A.A.; Khwarahm, N.R. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid

region: Range overlap and implications for conservation. Ecol. Inform. 2023, 73, 101930. [CrossRef]
13. Radha, K.O.; Khwarahm, N.R. An Integrated Approach to Map the Impact of Climate Change on the Distributions of Crataegus

azarolus and Crataegus monogyna in Kurdistan Region, Iraq. Sustainability 2022, 14, 14621. [CrossRef]
14. Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Heyden, Y.V. Four Pistacia atlantica subspecies (atlantica,

cabulica, kurdica and mutica): A review of their botany, ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020,
265, 113329. [CrossRef] [PubMed]

15. Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera,
P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. Sci.
World J. 2013, 2013, 219815. [CrossRef] [PubMed]

16. Hatamnia, A.A.; Abbaspour, N.; Darvishzadeh, R. Antioxidant activity and phenolic profile of different parts of Bene (Pistacia
atlantica subsp. kurdica) fruits. Food Chem. 2014, 145, 306–311. [CrossRef] [PubMed]

17. Bahmani, M.; Saki, K.; Asadbeygi, M.; Adineh, A.; Saberianpour, S.; Rafieian-Kopaei, M.; Bahmani, F.; Bahmani, E. The effects of
nutritional and medicinal mastic herb (Pistacia atlantica). J. Chem. Pharm. Res. 2015, 7, 646–653.

18. Schulze-Kaysers, N.; Feuereisen, M.; Schieber, A. Phenolic compounds in edible species of the Anacardiaceae family—A review.
RSC Adv. 2015, 5, 73301–73314. [CrossRef]

19. Sharifi, M.S.; Hazell, S.L. GC-MS analysis and antimicrobial activity of the essential oil of the trunk exudates from Pistacia atlantica
kurdica. J. Pharm. Sci. Res. 2011, 3, 1364.

20. Ahmad, S.A.; Askari, A.A. Ethnobotany of the Hawraman region of Kurdistan Iraq. Harv. Pap. Bot. 2015, 20, 85–89. [CrossRef]
21. Al-Saghir, M.G.; Porter, D.M.; Nilsen, E.T. Leaf anatomy of Pistacia species (Anacardiaceae). J. Biol. Sci. 2006, 6, 242–244. [CrossRef]
22. Basr Ila, H.; Kafkas, S.; Topaktas, M. Chromosome numbers of four Pistacia (Anacardiaceae) species. J. Hortic. Sci. Biotechnol. 2003,

78, 35–38. [CrossRef]
23. Parfitt, D.E.; Badenes, M.L. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. Proc. Natl.

Acad. Sci. USA 1997, 94, 7987–7992. [CrossRef] [PubMed]
24. Kafkas, S.; Perl-Treves, R. Morphological and molecular phylogeny of Pistacia species in Turkey. Theor. Appl. Genet. 2001,

102, 908–915. [CrossRef]
25. Talebi, M.; Kazemi, M.; Sayed-Tabatabaei, B.E. Molecular diversity and phylogenetic relationships of Pistacia vera, Pistacia atlantica

subsp. mutica and Pistacia khinjuk using SRAP markers. Biochem. Syst. Ecol. 2012, 44, 179–185. [CrossRef]
26. Belhadj, S.; Derridj, A.; Aigouy, T.; Gers, C.; Gauquelin, T.; Mevy, J.P. Comparative morphology of leaf epidermis in eight

populations of Atlas pistachio (Pistacia atlantica Desf., Anacardiaceae). Microsc. Res. Tech. 2007, 70, 837–846. [CrossRef]
27. Sawidis, T.; Dafnis, S.; Weryzko-Chmielewska, E. Distribution, development and structure of resin ducts in Pistacia lentiscus var.

chia Duhamel. Flora 2000, 195, 83–94. [CrossRef]
28. Al-Alfy, N.; Moustafa, A.; Alotaibi, M.; Mansour, S. Impact of Climate Change on Pistacia khinjuk as a Medicinal Plant in Egypt

and Saudi Arabia. Appl. Sci. Res. Rev. 2019, 6, 3.
29. Pineda, E.; Lobo, J.M. Assessing the accuracy of species distribution models to predict amphibian species richness patterns.

J. Anim. Ecol. 2009, 78, 182–190. [CrossRef]
30. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev.

Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

http://doi.org/10.1111/ecog.01496
http://doi.org/10.4236/ajps.2012.31002
http://doi.org/10.1007/s10722-017-0522-4
http://doi.org/10.1007/s10661-021-08959-6
http://doi.org/10.1007/s12517-021-07984-6
http://doi.org/10.1007/s12145-020-00541-x
http://doi.org/10.1007/s12517-022-10442-6
http://doi.org/10.1016/j.ecoinf.2022.101930
http://doi.org/10.3390/su142114621
http://doi.org/10.1016/j.jep.2020.113329
http://www.ncbi.nlm.nih.gov/pubmed/32889035
http://doi.org/10.1155/2013/219815
http://www.ncbi.nlm.nih.gov/pubmed/24453812
http://doi.org/10.1016/j.foodchem.2013.08.031
http://www.ncbi.nlm.nih.gov/pubmed/24128482
http://doi.org/10.1039/C5RA11746A
http://doi.org/10.3100/hpib.v20iss1.2015.n8
http://doi.org/10.3923/jbs.2006.242.244
http://doi.org/10.1080/14620316.2003.11511583
http://doi.org/10.1073/pnas.94.15.7987
http://www.ncbi.nlm.nih.gov/pubmed/9223300
http://doi.org/10.1007/s001220000526
http://doi.org/10.1016/j.bse.2012.05.013
http://doi.org/10.1002/jemt.20483
http://doi.org/10.1016/S0367-2530(17)30949-0
http://doi.org/10.1111/j.1365-2656.2008.01471.x
http://doi.org/10.1146/annurev.ecolsys.110308.120159


Sustainability 2023, 15, 5469 24 of 25

31. Svenning, J.-C.; Fløjgaard, C.; Marske, K.A.; Nógues-Bravo, D.; Normand, S. Applications of species distribution modeling to
paleobiology. Quat. Sci. Rev. 2011, 30, 2930–2947. [CrossRef]

32. Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann,
A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [CrossRef]

33. Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz, C.; Peterson, A.T. New developments in museum-based informatics and
applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [CrossRef] [PubMed]

34. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006,
190, 231–259. [CrossRef]

35. Bor, N.L.; Guest, E. Flora of Iraq, Vol. 9. Gramineae. In Flora of Iraq; Ministry of Agriculture and Agrarian Reform: Baghdad, Iraq, 1968.
36. Malinowski, J.C. Iraq: A Geography; United States Military Academy: West Point, NY, USA, 2002.
37. Salman, S.A.; Shahid, S.; Ismail, T.; Ahmed, K.; Chung, E.-S.; Wang, X.-J. Characteristics of annual and seasonal trends of rainfall

and temperature in Iraq. Asia-Pac. J. Atmos. Sci. 2019, 55, 429–438. [CrossRef]
38. Sissakian, V.; Jabbar, M.A.; Al-Ansari, N.; Knutsson, S. Development of Gulley Ali Beg Gorge in Rawandooz Area, Northern Iraq.

Engineering 2015, 7, 16–30. [CrossRef]
39. Khwarahm, N.R.; Ararat, K.; Qader, S.; Sabir, D.K. Modeling the distribution of the Near Eastern fire salamander (Salamandra

infraimmaculata) and Kurdistan newt (Neurergus derjugini) under current and future climate conditions in Iraq. Ecol. Inform. 2021,
63, 101309. [CrossRef]

40. Gaznayee, H.A.A.; Al-Quraishi, A.M.F.; Mahdi, K.; Ritsema, C. A Geospatial Approach for Analysis of Drought Impacts on
Vegetation Cover and Land Surface Temperature in the Kurdistan Region of Iraq. Water 2022, 14, 927. [CrossRef]

41. Bhatta, K.P.; Chaudhary, R.P.; Vetaas, O.R. A comparison of systematic versus stratified-random sampling design for gradient
analyses: A case study in subalpine Himalaya, Nepal. Phytocoenologia 2012, 42, 191–202. [CrossRef]

42. Boakes, E.H.; McGowan, P.J.; Fuller, R.A.; Chang-qing, D.; Clark, N.E.; O’Connor, K.; Mace, G.M. Distorted views of biodiversity:
Spatial and temporal bias in species occurrence data. PLoS Biol. 2010, 8, e1000385. [CrossRef]

43. Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation.
J. Biogeogr. 2014, 41, 629–643. [CrossRef]

44. Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model
analyses. Methods Ecol. Evol. 2014, 5, 694–700. [CrossRef]

45. Soberón, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers.
Inform. 2005, 2, 1–10. [CrossRef]

46. Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [CrossRef]
47. Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale.

J. Biogeogr. 2011, 38, 1–8. [CrossRef]
48. Pradervand, J.-N.; Dubuis, A.; Pellissier, L.; Guisan, A.; Randin, C. Very high resolution environmental predictors in species

distribution models: Moving beyond topography? Prog. Phys. Geogr. 2014, 38, 79–96. [CrossRef]
49. IPCC. The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 996, pp. 113–119.
50. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land

areas. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 1965–1978. [CrossRef]
51. Hanberry, B.B. Global population densities, climate change, and the maximum monthly temperature threshold as a potential

tipping point for high urban densities. Ecol. Indic. 2022, 135, 108512. [CrossRef]
52. Karim, R.; Tan, G.; Ayugi, B.; Babaousmail, H.; Liu, F. Evaluation of historical CMIP6 model simulations of seasonal mean

temperature over Pakistan during 1970–2014. Atmosphere 2020, 11, 1005. [CrossRef]
53. Fan, X.; Duan, Q.; Shen, C.; Wu, Y.; Xing, C. Global surface air temperatures in CMIP6: Historical performance and future changes.

Environ. Res. Lett. 2020, 15, 104056. [CrossRef]
54. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate

classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [CrossRef]
55. Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of

MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [CrossRef]
56. Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic,

biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [CrossRef] [PubMed]
57. Dudík, M.; Phillips, S.J.; Schapire, R.E. Maximum entropy density estimation with generalized regularization and an application

to species distribution modeling. J. Mach. Learn. Res. 2007, 8, 1217–1260.
58. Merow, C.; Smith, M.J.; Silander Jr, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why

inputs and settings matter. Ecography 2013, 36, 1058–1069. [CrossRef]
59. Phillips, S.J. A brief tutorial on Maxent. ATT Res. 2005, 190, 231–259.
60. Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either–or presence–absence.

Acta Oecologica 2007, 31, 361–369. [CrossRef]
61. Yang, X.-Q.; Kushwaha, S.; Saran, S.; Xu, J.; Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant,

Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [CrossRef]

http://doi.org/10.1016/j.quascirev.2011.06.012
http://doi.org/10.1111/j.2006.0906-7590.04596.x
http://doi.org/10.1016/j.tree.2004.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16701313
http://doi.org/10.1016/j.ecolmodel.2005.03.026
http://doi.org/10.1007/s13143-018-0073-4
http://doi.org/10.4236/eng.2015.71002
http://doi.org/10.1016/j.ecoinf.2021.101309
http://doi.org/10.3390/w14060927
http://doi.org/10.1127/0340-269X/2012/0042-0519
http://doi.org/10.1371/journal.pbio.1000385
http://doi.org/10.1111/jbi.12227
http://doi.org/10.1111/2041-210X.12200
http://doi.org/10.17161/bi.v2i0.4
http://doi.org/10.1111/j.2041-210X.2010.00036.x
http://doi.org/10.1111/j.1365-2699.2010.02416.x
http://doi.org/10.1177/0309133313512667
http://doi.org/10.1002/joc.1276
http://doi.org/10.1016/j.ecolind.2021.108512
http://doi.org/10.3390/atmos11091005
http://doi.org/10.1088/1748-9326/abb051
http://doi.org/10.1038/sdata.2018.214
http://doi.org/10.1371/annotation/35be5dff-7709-4029-8cfa-f1357e5001f5
http://doi.org/10.7717/peerj.4095
http://www.ncbi.nlm.nih.gov/pubmed/29230356
http://doi.org/10.1111/j.1600-0587.2013.07872.x
http://doi.org/10.1016/j.actao.2007.02.001
http://doi.org/10.1016/j.ecoleng.2012.12.004


Sustainability 2023, 15, 5469 25 of 25

62. Jiang, H.; Liu, T.; Li, L.; Zhao, Y.; Pei, L.; Zhao, J. Predicting the potential distribution of Polygala tenuifolia Willd. under climate
change in China. PLoS ONE 2016, 11, e0163718. [CrossRef]

63. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill
statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [CrossRef]

64. Li, C.; Gao, Y.; Zhao, Z.; Ma, D.; Zhou, R.; Wang, J.; Zhang, Q.; Liu, Q. Potential geographical distribution of Anopheles gambiae
worldwide under climate change. J. Biosaf. Biosecur. 2021, 3, 125–130. [CrossRef]

65. Hoveka, L.N.; van der Bank, M.; Davies, T.J. Winners and losers in a changing climate: How will protected areas conserve red list
species under climate change? Divers. Distrib. 2022, 28, 782–792. [CrossRef]

66. Monzón, J.; Moyer-Horner, L.; Palamar, M.B. Climate change and species range dynamics in protected areas. Bioscience 2011,
61, 752–761. [CrossRef]

67. Khwarahm, N.R. Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region,
Iraq. Ecol. Process. 2020, 9, 56. [CrossRef]

68. Ayebare, S.; Plumptre, A.; Kujirakwinja, D.; Segan, D. Conservation of the endemic species of the Albertine Rift under future
climate change. Biol. Conserv. 2018, 220, 67–75. [CrossRef]

69. Loarie, S.R.; Carter, B.E.; Hayhoe, K.; McMahon, S.; Moe, R.; Knight, C.A.; Ackerly, D.D. Climate change and the future of
California’s endemic flora. PLoS ONE 2008, 3, e2502. [CrossRef] [PubMed]

70. Le Roux, P.C.; McGEOCH, M.A. Rapid range expansion and community reorganization in response to warming. Glob. Chang.
Biol. 2008, 14, 2950–2962. [CrossRef]

71. López-Sánchez, C.A.; Castedo-Dorado, F.; Cámara-Obregón, A.; Barrio-Anta, M. Distribution of Eucalyptus globulus Labill. in
northern Spain: Contemporary cover, suitable habitat and potential expansion under climate change. For. Ecol. Manag. 2021,
481, 118723. [CrossRef]

72. Wang, W.J.; Thompson III, F.R.; He, H.S.; Fraser, J.S.; Dijak, W.D.; Jones-Farrand, T. Climate change and tree harvest interact to
affect future tree species distribution changes. J. Ecol. 2019, 107, 1901–1917. [CrossRef]

73. Setyawan, A.D.; Supriatna, J.; Nisyawati, N.; Nursamsi, I.; Sutarno, S.; Sugiyarto, S.; Sunarto, S.; Pradan, P.; Budiharta, S.;
Pitoyo, A.; et al. Projecting expansion range of Selaginella zollingeriana in the Indonesian archipelago under future climate
condition. Biodivers. J. Biol. Divers. 2021, 22, 2088–2103. [CrossRef]

74. Tsiftsis, S.; Štípková, Z.; Kindlmann, P. Role of way of life, latitude, elevation and climate on the richness and distribution of
orchid species. Biodivers. Conserv. 2019, 28, 75–96. [CrossRef]

75. Zhang, K.; Liu, H.; Pan, H.; Shi, W.; Zhao, Y.; Li, S.; Liu, J.; Tao, J. Shifts in potential geographical distribution of Pterocarya
stenoptera under climate change scenarios in China. Ecol. Evol. 2020, 10, 4828–4837. [CrossRef]

76. Nachtergaele, F.O. Classification Systems: FAO

USV Symbol Macro(s) Description
24DD ⓝ \textcircled{n} CIRCLED LATIN SMALL LETTER N

24DE ⓞ \textcircled{o} CIRCLED LATIN SMALL LETTER O

24DF ⓟ \textcircled{p} CIRCLED LATIN SMALL LETTER P

24E0 ⓠ \textcircled{q} CIRCLED LATIN SMALL LETTER Q

24E1 ⓡ \textcircled{r} CIRCLED LATIN SMALL LETTER R

24E2 ⓢ \textcircled{s} CIRCLED LATIN SMALL LETTER S

24E3 ⓣ \textcircled{t} CIRCLED LATIN SMALL LETTER T

24E4 ⓤ \textcircled{u} CIRCLED LATIN SMALL LETTER U

24E5 ⓥ \textcircled{v} CIRCLED LATIN SMALL LETTER V

24E6 ⓦ \textcircled{w} CIRCLED LATIN SMALL LETTER W

24E7 ⓧ \textcircled{x} CIRCLED LATIN SMALL LETTER X

24E8 ⓨ \textcircled{y} CIRCLED LATIN SMALL LETTER Y

24E9 ⓩ \textcircled{z} CIRCLED LATIN SMALL LETTER Z

24EA ⓪ \textcircled{0} CIRCLED DIGIT ZERO

2504 ┄ \textCuttingLine BOX DRAWINGS LIGHT TRIPLE DASH HORIZONTAL

25B2 ▲ \textUParrow BLACK UP-POINTING TRIANGLE

25B3 △ \textbigtriangleup WHITE UP-POINTING TRIANGLE

25B6 ▶ \textForward BLACK RIGHT-POINTING TRIANGLE

25B7 ▷ \texttriangleright WHITE RIGHT-POINTING TRIANGLE

25BA ► \textRHD BLACK RIGHT-POINTING POINTER

25BC ▼ \textDOWNarrow BLACK DOWN-POINTING TRIANGLE

25BD ▽ \textbigtriangledown WHITE DOWN-POINTING TRIANGLE

25C0 ◀ \textRewind BLACK LEFT-POINTING TRIANGLE

25C1 ◁ \texttriangleleft WHITE LEFT-POINTING TRIANGLE

25C4 ◄ \textLHD BLACK LEFT-POINTING POINTER

25C7 ◇ \textdiamond WHITE DIAMOND

25CA ◊ \textlozenge LOZENGE

25D6 ◖ \textLEFTCIRCLE LEFT HALF BLACK CIRCLE

25D7 ◗ \textRIGHTCIRCLE RIGHT HALF BLACK CIRCLE

25E6 ◦ \textopenbullet WHITE BULLET

25EB ◫ \textboxbar WHITE SQUARE WITH VERTICAL BISECTING LINE

25EF ◯ \textbigcircle LARGE CIRCLE

2601 ☁ \textCloud CLOUD

2605 ★ \textFiveStar BLACK STAR

2606 ☆ \textFiveStarOpen WHITE STAR

260E ☎ \textPhone BLACK TELEPHONE

2610 ☐ \textboxempty BALLOT BOX

2611 ☑ \textCheckedbox BALLOT BOX WITH CHECK

2612 ☒ \textCrossedbox BALLOT BOX WITH X

2615 ☕ \textCoffeecup HOT BEVERAGE

261A ☚ \textHandCuffLeft BLACK LEFT POINTING INDEX

261B ☛ \textHandCuffRight BLACK RIGHT POINTING INDEX

261C ☜ \textHandLeft WHITE LEFT POINTING INDEX

261E ☞ \textHandRight WHITE RIGHT POINTING INDEX

2622 ☢ \textRadioactivity RADIOACTIVE SIGN

2623 ☣ \textBiohazard BIOHAZARD SIGN

2625 ☥ \textAnkh ANKH

262F ☯ \textYinYang YIN YANG

2639 ☹ \textfrownie WHITE FROWNING FACE

263A ☺ \textsmiley WHITE SMILING FACE

263B ☻ \textblacksmiley BLACK SMILING FACE

263C ☼ \textsun WHITE SUN WITH RAYS

263D ☽ \textleftmoon FIRST QUARTER MOON

263E ☾ \textrightmoon LAST QUARTER MOON

263F ☿ \textmercury MERCURY

44

. In Reference Module in Earth Systems and Environmental Sciences; Elsevier:
Amsterdam, The Netherlands, 2017.

77. Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution
modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [CrossRef]

78. Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [CrossRef]
79. Elith, J.; Franklin, J. Species distribution modeling. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier Inc.: Amsterdam, The

Netherlands, 2013; pp. 692–705.
80. Barnhart, P.R.; Gillam, E.H. The impact of sampling method on maximum entropy species distribution modeling for bats. Acta

Chiropterologica 2014, 16, 241–248. [CrossRef]
81. Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol.

Lett. 2009, 12, 334–350. [CrossRef] [PubMed]
82. Carneiro, L.R.d.A.; Lima, A.P.; Machado, R.B.; Magnusson, W.E. Limitations to the use of species-distribution models for

environmental-impact assessments in the Amazon. PLoS ONE 2016, 11, e0146543. [CrossRef]
83. Miller, J. Species distribution modeling. Geogr. Compass 2010, 4, 490–509. [CrossRef]
84. Kasagana, V.N.; Karumuri, S.S. Conservation of medicinal plants (past, present & future trends). J. Pharm. Sci. Res. 2011, 3, 1378.
85. Mahmoodi, S.; Heydari, M.; Ahmadi, K.; Khwarahm, N.R.; Karami, O.; Almasieh, K.; Naderi, B.; Bernard, P.; Mosavi, A. The

current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of
Iran: Implications for ecological conservation and restoration. Ecol. Indic. 2022, 137, 108752. [CrossRef]

86. Yadav, P.; Sarma, K.; Dookia, S. The review of biodiversity and conservation study in India using geospatial technology. Int. J.
Remote Sens. GIS 2013, 2, 1–10.

87. Draper, D.; Rosselló-Graell, A.; Garcia, C.; Gomes, C.T.; Sérgio, C.l. Application of GIS in plant conservation programmes in
Portugal. Biol. Conserv. 2003, 113, 337–349. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1371/journal.pone.0163718
http://doi.org/10.1111/j.1365-2664.2006.01214.x
http://doi.org/10.1016/j.jobb.2021.08.004
http://doi.org/10.1111/ddi.13488
http://doi.org/10.1525/bio.2011.61.10.5
http://doi.org/10.1186/s13717-020-00259-0
http://doi.org/10.1016/j.biocon.2018.02.001
http://doi.org/10.1371/journal.pone.0002502
http://www.ncbi.nlm.nih.gov/pubmed/18648541
http://doi.org/10.1111/j.1365-2486.2008.01687.x
http://doi.org/10.1016/j.foreco.2020.118723
http://doi.org/10.1111/1365-2745.13144
http://doi.org/10.13057/biodiv/d220458
http://doi.org/10.1007/s10531-018-1637-4
http://doi.org/10.1002/ece3.6236
http://doi.org/10.1111/ddi.12892
http://doi.org/10.3390/e11040854
http://doi.org/10.3161/150811014X683435
http://doi.org/10.1111/j.1461-0248.2008.01277.x
http://www.ncbi.nlm.nih.gov/pubmed/19292794
http://doi.org/10.1371/journal.pone.0146543
http://doi.org/10.1111/j.1749-8198.2010.00351.x
http://doi.org/10.1016/j.ecolind.2022.108752
http://doi.org/10.1016/S0006-3207(03)00125-3

	Introduction 
	Materials and Methods 
	Study Area 
	Ground Data for P. eurycarpa Yalt and P. khinjuk Stock 
	Environmental Datasets 
	Model Building 
	Model Evaluation 
	Analysis of the Distribution Change between the Habitat of the Present and Future for the Species 

	Results 
	Performance of the Model 
	Distributions of the Habitat in the Present and Future for P. khinjuk and P. eurycarpa 
	Analysis of the Distribution Change between the Present and Future Habitats for P. khinjuk and P. eurycarpa 
	The Direction and Degree of the Distributional Change for P. eurycarpa and P. khinjuk 
	Environmental Factors’ Relative Relevance and Contribution to the Spread of P. eurycarpa and P. khinjuk 

	Discussion 
	Species of Tree Plant Respond Differently to the Scenarios of the Future Climate 
	Edaphic and Environmental Variables Contributed to the Expansion and Distribution of theP. khinjuk and P. eurycarpa in the Future Climatic Scenarios 
	Implications for Ecological Conservation 

	Conclusions 
	Appendix A
	References

