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Abstract: Recently, Japan has been hit by more frequent and severe rainstorms and floods. Ty-
phoon Hagibis caused heavy flooding in many river basins in central and eastern Japan from
12–13 October 2019, resulting in loss of life, substantial damage, and many flood insurance claims.
Considering that obtaining accurate assessments of flood situations remains a significant challenge,
this study used a geographic information system (GIS)-based analytical hierarchy process (AHP)
approach to develop flood susceptibility maps for the Abukuma, Naka, and Natsui River Basins
during the Typhoon Hagibis event. The maps were based on population density, building density,
land-use profile, distance from the river, slope, and flood inundation. A novel approach was also
employed to simulate the flood inundation profiles of the river basins. In addition, a crosscheck
evaluated the relationship between flood insurance claims and the developed flood risk zones within
the river basins. Over 70% of insurance claims were concentrated in high to very high risk zones
identified by the flood susceptibility maps. These findings demonstrate the effectiveness of this type
of assessment in identifying areas that are particularly vulnerable to flood damage, which can be a
useful reference for flood disaster management and related stakeholder concerns for future extreme
flood events.

Keywords: extreme rain; flood; flood susceptibility map; flood insurance; hydrological analysis;
social data; AHP

1. Introduction

Local or national governments and consultants conduct various types of disaster risk
assessments for flood events, including warnings, responses, mitigation, and the evaluation
of water-related disasters. These assessments can be invaluable for planning strategies,
quantifying needs, and allocating resources during flood events. For instance, flood in-
surance risk guidelines have been defined and implemented during flood disaster events
in many countries [1–3], providing private companies and local organizations with a key
reference for managing stakeholders during flood events. In general, government organiza-
tions issue various types of risk information related to flood disasters during extreme rain
events, and research organizations may also publish their research findings, such as rapid
flood inundation mapping [4]. These assessments can help to identify potential impacts
and their severity before a flood event, while close monitoring and continuous updates
can ensure that prompt action and precautions are taken. However, many assessments
focus on post-event recovery and evaluation, often requiring time-consuming field surveys
to produce valuable results. Additionally, complex societies and artificial infrastructure
increase the uncertainties in flood risk assessments, particularly in a developed country like
Japan. As a result, obtaining and disseminating accurate assessments of flood situations
remains a significant challenge in such a changing environment.

Flood disasters can significantly impact socio-economic welfare, rendering insurance
an essential consideration for improving resilience to flood events and promoting recovery
while providing incentives for investments in hazard mitigation [2,5,6]. As flood insurance
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claims are often made immediately after a flood event, social insurance companies must
collect timely and accurate information on losses and damages to life and infrastructure
throughout the disaster to effectively manage claims and support clients in the aftermath.
Such information could also help estimate the damage cost and allow insurance companies
to offer recovery funds to affected communities. Therefore, from a social insurance perspec-
tive, a quick and reliable assessment of flood events is crucial to accurately evaluate and
promptly process all claims. Although new technologies can improve disaster monitoring
and warning capabilities, anthropogenic activities (e.g., urbanization, land use planning,
complex construction, embankments along rivers, and encroachment of river courses)
can present challenges for flood risk assessments during extreme rain events. Moreover,
modern societies’ unpredictable nature and complexity make quick assessments of flood
events challenging, particularly in urban areas [7].

Japan has experienced frequent extreme rain events and the associated floods in recent
years [8–15], leading to property damage and loss of life, which is becoming increasingly
common every year. Catastrophic flooding occurred in the Kanto region in 2015 [10], the
Kyushu region in 2017 [11], the western region of Japan in 2018 [12], the central northern
region of Japan in 2019 [13], and recent flood events occurred in the Kyushu region in July
2020 [14]. These events all caused substantial loss of life and property damage [15]. The
total damage costs have increased in Japan owing to highly unpredictable events, with
climate change projections indicating that the frequency of extreme rain and the associated
flood events will continue to rise in the coming years [7–9]. Consequently, flood insurance
claims are also expected to increase, leading governments and private organizations to
become increasingly concerned about flood risk and its impact on society. One notable case
is a social insurance company that had to pay a large amount of money, drawing attention
from academics and non-governmental agencies. Although each flood disaster has specific
characteristics and cannot be fully controlled, managing, preventing, and predicting flood
risks through daily efforts is possible.

Managing flood events is a complex and uncertain process due to multiple factors.
This complexity can lead to decision-makers facing a range of intervention options that
are not suitable in terms of assessment criteria. To address this, mapping flood suscep-
tibility has become a critical strategy for identifying the most vulnerable areas based on
the geomorphological characteristics of the investigated area [16–28]. Flood susceptibil-
ity is closely related to disaster-causing factors (hazards), vulnerable environments, and
management measures [17]. Previous studies have used historical rain events to define
hazard maps [17,21–24] and other influential factors, such as population, building, land
use, slope, and river characteristics to define potential flood susceptibility maps. Influential
factors may vary depending on the situation and objectives. While flood susceptibility
maps based on hazard maps can aid in the development of potential early warning systems
or strategies for the prevention and mitigation of future flood events, they have limitations
in their ability to capture the full complexity of flood events.

Different multi-criteria decision methods have been used to develop flood susceptibil-
ity maps [17,18,21–24,26]. The most common technique, the analytical hierarchy process
(AHP), has been used to create a particular decision-making framework for flood suscepti-
bility mapping [20]. It supports decision-makers in making the best decision by reducing
complex decisions to a series of comparative pairs and synthesizing the results. The AHP
disaggregates a complex decision problem into different hierarchical levels. This method
facilitates the quantification of opinions and transforms them into a coherent decision
model, which has been widely used by many authors worldwide [16,17,19,20,22,26,28]. In
this study, we developed a flood susceptibility map for a specific extreme rain event. This
study aimed to develop a new approach to delineate flood risk areas by incorporating the
results of hydrological simulation analysis data instead of historical analyses of rainfall
events and other fundamental influencing factors from the social insurance perspective.
Therefore, the objective of this study was to answer the following scientific questions:
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• How effective are hydrological simulations in creating flood risk zones that meet the
requirements of flood-related insurance policies during extreme rainfall events?

• Is it possible to create flood susceptibility maps using a simulated flood inundation
extent instead of hazard maps based on historical rain data?

• Lastly, can flood susceptibility mapping products be used by social insurance compa-
nies as a reliable guide or reference during specific heavy-rain events?

On 12–13 October 2019, Typhoon Hagibis caused extreme rain resulting in heavy
flooding in Japan. It was the strongest typhoon to strike mainland Japan in decades,
and it resulted in the collapse of 140 embankments along more than 70 rivers across the
country [29], as well as 98 fatalities and severe damage to over 80,000 homes [30]. It
also substantially damaged the Tohoku, Kanto, Hokuriku, and Chubu regions, with a
population of approximately 43 million, representing one-third of Japan’s total population.
Several areas of the river basins were severely flooded during the event. As a case study to
answer the above-mentioned questions, we selected the Abukuma, Naka, and Natusi River
basins in Japan (Figure 1), which were flooded during the heavy-rain event of Typhoon
Hagibis. The total rainfall from 2019-10-10 0000UTC to 2019-10-14 2300UTC is presented in
Figure 2. The total rainfall was up to 600 mm in some portions of the river basins. Flood
inundation was widespread during this event, resulting in many insurance claims being
reported (Figure 1).

Figure 1. Topographic map showing the altitudinal profile of the Abukuma, Natsui and Naka River
Basins. Purple polygons show the insurance claimed during the extreme rain event of September 2019,
Typhoon Hagibis.



Sustainability 2023, 15, 4909 4 of 21

Figure 2. Total accumulated rainfall from 2019-10-10 0000UTC to 2019-10-14 2300UTC over the
Abukuma, Natsui and Naka River Basins.

2. Materials and Methods
2.1. Study Area

During Typhoon Hagibis, many river basins in northeastern Japan were severely
flooded, resulting in loss of life, significant damage, and numerous flood insurance claims.
As part of our study objectives, we collected various types of data, the most crucial being
flood insurance claim data submitted by individuals in the affected areas to social insurance
companies. Despite the challenges of collecting personal data, Tokio Marine & Nichido
Fire Insurance Co., Ltd., Tokyo, Japan. provided us with limited flood insurance claim data
that covered some parts of northeastern Japan. After analyzing the data, we found that
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they fully covered the Abukuma, Naka, and Natsui River Basins. Therefore, we focused on
these three river basins, which experienced severe flooding during Typhoon Hagibis.

Abukuma is the sixth longest river in Japan, originating from the Nasu Mountains
and flowing through the Fukushima and Miyagi Prefectures. The lowland area of the
Abukuma River Basin, where ~1.2 million people reside, was severely affected by the
collapse of levees at 47 locations along the river and 16 of its tributaries, resulting in
flooding that covered over 1000 km2 of the basin [29,30]. The Naka River Basin, with a
population of ~0.9 million people, is located in the eastern Honshu region of Japan and
flows through the Tochigi and Ibaraki Prefectures [31,32]. The Natsui River Basin, with
a population of ~0.16 million, is smaller than the other two river basins and was also
flooded, especially at the lower part of the basin [33]. The Ministry of Land, Infrastructure,
Transport, and Tourism (MLIT) categorizes the Abukuma and Naka Rivers as class-A-type
rivers. Therefore, gauging stations are available in the Abukuma and Naka River Basins on
the MLIT website, whereas gauging stations for the Natsui River Basin are not available.

The overflow and collapse of embankments were common in several channels within
the selected river basins [29–33]. It is important to note that other river basins not considered
in this study also experienced flooding during the same period. However, we collected all
the necessary data for the selected three basins, and we believe that the results obtained
from these basins can effectively address our objectives. We anticipate that this approach
can be applied to other river basins for further verification in future studies.

2.2. Data

Each river basin has unique characteristics based on its size and physiographic features.
As previously mentioned, the objective of this study was to develop flood risk zoning for
river basins and evaluate their accuracy using the social insurance claim data of the extreme
rain event. Various datasets were used to accomplish this, and this section will discuss
them in detail.

2.2.1. Rainfall Data

Various types of radar observations in Japan are used to record, monitor, and forecast
precipitation for operational and research purposes. The Japan Meteorological Agency
(JMA) issues real-time radar rainfall data (JMA radar) derived from more than 20 C-band
radars distributed across the country. The JMA radar data have varying spatiotemporal
resolutions. To reduce errors in rainfall estimates, JMA updates radar data with rain gauge
data from the Automated Meteorological Data Acquisition System (AMeDAS) [34].

In this study, we used JMA radar rainfall data with a spatial resolution of 500 m and
a temporal resolution of 1 h from 2019-10-10 0000UTC to 2019-10-14 2300UTC. Figure 2
shows the total radar rainfall distribution in the study area. The spatial distribution of the
radar rainfall varied within the selected river basins. We used these data as the primary
input for the hydrological simulation of the river basin.

2.2.2. Topographic Data

The Digital Elevation Model (DEM) served as the key dataset for generating other
essential data for hydrological simulation. The DEM data were obtained from the Japan
Flow Direction Map, developed by the University of Tokyo and the Kyoto University, and
were primarily based on national elevation data and water maps [35]. Hydrologically
adjusted DEM data at a 1-s resolution (~30 m) can be downloaded freely by all of Japan for
research purposes. To enable a quick hydrological simulation of large river basins, such
as those studied in this research, the default grid size was increased eightfold during the
model setup. Based on the study area and model properties, the resulting topographic data
grid size was ~250 m spatial resolution. Additionally, hydrographic features, such as flow
accumulation (ACC), flow direction (DIR), and river channels, were prepared separately for
each river basin, which is critical for setting up the hydrological model in the study area.



Sustainability 2023, 15, 4909 6 of 21

2.2.3. River Discharge Data

Water level data with an hourly resolution are commonly available for Japanese
rivers. They can be accessed on the water information system of the Ministry of Land,
Infrastructure, Transport, and Tourism (MLIT) website. The MLIT estimates discharge
data at each station using water level data, and makes the information available to the
public on its website. While observed river discharge data were available at some points
in the selected river basins, the availability and continuity of the data varied among the
stations. To ensure data availability, we selected two gauging stations along the Abukuma
River (302011282206080—Senba; 302011282206090—Yamada) located near the outlet of
the Abukuma River Basin. Similarly, two more stations (303021283322020—Nemotomachi;
303021283322040—Noguchi) were selected for the Naka River Basin. However, no observed
river discharge data were available for the selected event in the Natsui River Basin.

2.2.4. Social Data

Social data played a critical role in this study; therefore, different types of social
data types were used. The first was population data, downloaded in Geotiff format at a
resolution of 3 arc (approximately 100 m) from the WorldPop mapping website (https://
www.worldpop.org (accessed on 25 May 2022)), which is based in the School of Geography
and Environmental Sciences at the University of Southampton. This dataset provided
gridded estimates of the population count.

Additionally, building data were collected from NTT Infrastructure Network Corpo-
ration (https://www.nttinf.co.jp/ (accessed on 26 May 2022)). The default distribution
of the building data was in shape format, which was then converted into density using
the zonal distribution tool of ArcGIS10.6. A high-resolution land-use map for Japan was
published by the Japan Aerospace Exploration Agency (JAXA) Earth Observation Research
Center (EORC) ALOS/ALOS-2 Science Project, and Earth Observation Priority Research:
The Ecosystem Research Group (https://www.eorc.jaxa.jp (accessed on 30 May 2022)). The
default land-use data had a spatial resolution of ~30 m. A more detailed explanation of
these datasets and their processing is provided in Section 2.3.1.

2.3. Methods

To achieve the objectives of this study, various methods were employed using the
data discussed in the previous section. The study framework was divided into two main
steps: the first involved a hydrological simulation [11–13,36–40] and the second focused on
developing flood risk using the analytic hierarchy process (AHP). This classic approach
has been used in many studies [16,20,23,25,26,28].

2.3.1. Hydrological Simulation

Hydrological modeling is integral to understanding flood processes in various river
basins. As a result, numerous studies have focused on hydrological simulations of flood-
affected river basins during extreme rainfall events, with a particular emphasis on the
inundation extent [11–13,36–40]. Different types of hydrological models are widely avail-
able, including HEC-HMS [41], VIC [42], and TOPMODEL [43], among others. However,
these models must be combined with a hydraulic model to analyze flood inundation over a
river basin [36,44]. There is also an ongoing debate about which models are appropriate for
the hydrological analysis of a river basin. The selection of a hydrological model depends
on the study’s objectives. In this study, we employed the rainfall-runoff-inundation (RRI)
model, a two-dimensional, distributed-parameter, structured grid, hydrological model that
can simultaneously model both runoff and flood inundation [36,44]. The RRI model calcu-
lates the hydrological response in a grid cell at the river channel location, assuming that both
the slope and the river are located within the same grid cell. The channel was discretized
as a single line along the centerline of the overlying slope-grid cell. Detailed mathematical
explanations of the RRI model have been provided in previous studies [12,36–40], and the
RRI user manual [44] offers a comprehensive overview and technical references for the
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model. Other studies have also applied this model to simulate flooding in various river
basins [12,13,36–40].

To set up the model for the selected river basins, we first prepared the hydrographic
features. The DIR and DEM data were separately fixed for each selected river basin and
applied to the model setup. River geometry, including river width, depth, and embankment
height, is a critical parameter that needs to be specified during the model setup. Previous
studies have used empirical equations for river geometries as inputs for the RRI model in
different river basins [12,13,33,35,37]. P. C. et al. (2020) [12] proposed a simple approach
for extracting river geometries in river basins in Japan. In previous studies, empirical
equations were defined for the Kuji River Basin, a neighboring basin of the three selected
river basins (next to the Naka River Basin) [13]. Thus, in this study, we employed the
reference empirical equation of the Kuji River Basin for the model setup.

We also used land-use data in the model setup, which was resampled into four
classes: water, urban, agriculture, and forest. Furthermore, the radar rainfall data from
10–14 October 2019, were the key input for the model simulation. Observed discharge
data collected at different points in the Abukuma and Naka River Basins were compared
with simulated discharge data for those points. The hydrological simulation method for
ungauged river basins proposed by P.C. et al. (2018) [45] was used for the Natsui River
Basin, as it was ungauged. The same model setup used for the nearby gauged river basins
with satisfactory results was adopted for the Natsui River Basin without changing the
model parameters.

The RRI model is capable of simulating rainfall-runoff and flood inundation simulta-
neously [36]. Once the simulation was completed, the inundation depth at each grid of the
selected basins was extracted for each time step within the entire time period. Frequency
analysis of flood inundation depths was then performed at each grid of those basins, con-
sidering the peak time periods of the event. A detailed analysis and technical procedures
for developing the required flood inundation profiles for all the river basins are explained
in the Results section. An overall flow chart of the methodology is shown in Figure 3.

Figure 3. Flow chart to define the flood risk zones in river basins.

2.3.2. Analytic Hierarchy Process (AHP)

The AHP is used to support multi-criteria decision-making and was initially developed
by Saaty (1980) [46]. Although various multi-criteria decision-making methods are avail-
able, we used AHP in this study as it derives ratio scales from paired comparisons of criteria
and allows for minor inconsistencies in judgments. This method enables decision-makers
to make informed decisions based on results combined with various types of information,
including actual measurements and subjective opinions. It helps to better understand
complex decision problems by thoroughly considering possible decision criteria and select-
ing the most significant criteria for the respective decision objectives. Furthermore, this
method facilitates the translation of subjective opinions, such as preferences or feelings,
into measurable numeric relations. Using AHP assists in making more rational decisions,
ensuring transparency, and improving project management understanding [47]. The results
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of the pairwise comparisons were arranged in a matrix, and the first (dominant) normalized
right eigenvector of the matrix provides the ratio scale (weighting), with the eigenvalue
determining the consistency ratio (less than 10%). The mathematical explanation of the
AHP has been described in many studies [16,20,23,25,26,28], and online tools and examples
of AHP are available [48].

When applying the AHP method, we considered the following: frequency of flood
inundation (INU), population density (POP), building density (BLD), land-use profile (LU),
distance from rivers (DIS), and slope distribution (SLP). Section 3 provides a detailed
explanation of these data.

3. Results

In this section, we present the results of the hydrological analysis and the development
of the flood susceptibility map. We provide a detailed discussion of the hydrological
model’s performance and present the flood susceptibility map, including identifying high-
risk areas based on the AHP decision-making method.

3.1. Simulated Discharge

Rainfall data are the primary input for the hydrological modeling of extreme rain
events. This study used only rainfall data as inputs to the model; other meteorological data
were not considered. To ensure the stability of the simulation, we fixed the time control of
the simulation output to cover the period from 2019-10-10 0000UTC to 2019-10-14 2300UTC.
The RRI model was adopted separately for the Abukuma and Naka River Basins. Three
major components, including river water discharge, river water level, and inundation
depth, were simulated for each grid of the river basins. We compared the results of our
simulations with observed and estimated data from gauging stations within the river basins
to evaluate the model’s performance (Figure 1). Figures 4 and 5 show the relationship
between the observed and simulated discharge at the two stations of the Abukuma and
Naka River Basins, respectively. Overall, we observed a strong correlation between the
simulated and observed discharge, but an overestimation of the simulated discharge was
observed at both Abukuma River Basin stations. This could have been caused by physical
properties and model uncertainties [49]. Some data were missing at the selected Naka River
Basin gauging stations, which is common during flood events, but the missing data are not
discussed in this study.

Figure 4. Comparison of the observed and simulated discharge by RRI at the two gauging stations
(Senba and Yamada) of Abukuma River Basin for the typhoon Hagibis 2019 case.
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Figure 5. Comparison of the observed and simulated discharge by RRI at the two gauging stations
(Nemotomachi and Noguchi) of Naka River Basin for the typhoon Hagibis 2019 case.

We obtained high correlation values of 0.92 and 0.94 for the observed and simulated
discharge at the Senba and Yamada stations in the Abukuma River Basin, respectively, with
corresponding Nash-Sutcliffe efficiency (NSE) values of 0.84 and 0.87, indicating a close
match between simulated and observed discharge in the Abukuma River Basin. In the
Naka River Basin, data were missing mainly during peak periods at the Nemotomachi and
Noguchi stations, preventing statistical assessment. However, the trend of the simulated
and observed discharge at the Naka River Basin stations showed realistic results. The
same model parameters used for the Abukuma and Naka River Basins were applied to
the Natsui River Basin, and the simulated results for all three river basins were found to
be acceptable.

3.2. Flood Inundation Depth Analysis

The maximum possible inundation depth over the river basins during the rain event
is essential in hydrological simulations. Figure 6 displays the maximum flood inundation
depth profiles of the river basins. The maximum inundation depth varied significantly
among the basins, with maximum modeled inundation depths of 4.7 m, 5.7 m, and 2.1 m
for the Abukuma, Naka, and Natsui River Basins, respectively. The inundation areas were
primarily limited to the lower reaches of the major rivers but also extended upstream in
those basins.

An important aspect of flood risk analysis is understanding the duration and depth
variation of flood inundation within river basins. Such information cannot be derived by
only using the maximum inundation depth profile of the river basins (Figure 6). Instead,
we calculated the flood inundation profile at the hourly time step of the entire simulation
for each basin grid. Therefore, the analysis of these time steps can be an important reference
to identify the effective flood depth and its variation (above a certain depth) in the basins.
Such information is closely related to losses and damage to infrastructure and property. To
address the duration and frequency of flood inundation depth during the peak rain event,
the frequency of flood inundation depth within the selected river basins was investigated.
We believe that flood inundation depths greater than 0.5 m can damage properties and
result in life loss. Our intention was to count the number of inundation grid depths
greater than 0.5 m of the entire river basin. Then, we calculated the spatial distribution
of the absolute frequency of flood inundation (>0.5 m) in the selected river basins from
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the time period of 2019-10-11 1500UTC to 2019-10-14 1500UTC. Hence, among the 72-time
steps, the frequency of flood inundation depth (>0.5 m) was up to 57 times in some grids.
This information is the key reference for generalizing possible risk areas or zones within
the basins.

Figure 6. Maximum flood inundation depth profile by RRI over the river basins for the typhoon
Hagibis 2019 case.

During the model setup, river geometries were defined based on a reference empirical
equation [13]. The spatial grid for the flood inundation mapping was set to a spacing
of approximately 250 m throughout the simulation. Although it is possible to perform
simulations with finer spatial resolutions by adjusting the temporal scale, the accurate sim-
ulation of large river basins at fine spatiotemporal scales can be challenging and may not be
common [33]. In addition, flood scenarios [12], such as embankment failure and backwater
effects, are unknown in the early stages of the simulation, and predicting the time and
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location of such failures remains challenging. Several studies have discussed the optimal
scales for DEM, hydrometeorological input data, and flood scenarios [12,34,50]. Running
hydrological simulations that incorporate all these issues at once are still challenging,
especially for rapid simulations after a flood event.

We utilized the kriging interpolation method to visualize the spatial distribution of
flood depth frequency in each river basin and account for uncertainties and unobserved
scenarios such as embankment failure and backwater effect. This method assumes that the
distance or direction between sample points reflects a spatial correlation that can be used
to explain variations in depth. The result was a flood inundation profile (INU) map based
on the output of the hydrological simulation.

Notably, a single output from each selected dataset was used to develop the suscepti-
bility map during the GSI-AHP process. Based on the results of the hydrological analysis, a
single output was summarized by addressing the depth, duration, and uncertainties of the
simulated flood inundation profile. This is considered a realistic and innovative approach
for targeting potential flood disaster risks. Finally, the relative frequency of the INU profile
was calculated during peak time periods, highlighting the possible areas that may inundate
during the selected period of the rain event. The relative frequency was reclassified into
four categories (0–0.25, 0.25–0.50, 0.50–0.75, and 0.75–1.0), and it is shown in Figure 7 as
key input data for the AHP process.

Figure 7. Spatial distribution of relative frequency of flood inundation (>0.5 m) from the period of
2019-10-11 1500UTC—2019-10-13 1400UTC.
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3.3. Influential Data Processing

We focused on identifying the most influential datasets in the data-processing stage to
determine realistic flood susceptibility within the three river basins. The primary dataset
used was the INU data obtained from the hydrological analysis of flood events. In addition,
we considered three important social datasets and two physiographic datasets, which
were selected based on their importance in achieving our research objectives. It should be
noted that in some studies, data are divided into different groups and analyzed separately
before producing the final risk map [16,28]. However, in this study, we selected only the
most significant influential datasets to achieve our objectives. The five selected influential
datasets are described in the following subsections.

3.3.1. Population Density (POP)

The population directly impacted by extreme flood events is an essential consideration
in this study. The default spatial resolution of the population data is 100 m. The default data
presents the population as the number of people per grid cell. We calculated the relative
frequency of this distribution to identify possible high-density population areas within
the basins, as shown in Figure 8a. The relative frequency was then reclassified into four
categories (0–0.05, 0.05–0.15, 0.15–0.30, and 0.30–1.0) to represent low, moderate, high, and
very high population densities, respectively, in the input raster data for the AHP process.

Figure 8. Selected influential factors for flood susceptibility: (a) Population density; (b) Building
density; (c) Land use; (d) Distance from rivers; and (e) Slope.

3.3.2. Building Density (BLD)

BLD data are crucial in flood risk mapping as they indicate the potential impact of
floods on buildings. The BLD data used in this study were initially in shape format and
were subsequently converted to point data, which were then interpolated to obtain the
distribution of building density within the basins. The relative density of the distribution
was then calculated to identify areas with a high density of buildings, as depicted in
Figure 8b. The relative density data were then reclassified into four categories, namely low,
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moderate, high, and very high statuses (0–0.05, 0.05–0.15, 0.15–0.30, and 0.30–1.0), for use
in the AHP process as input raster data.

3.3.3. Land-Use Profile (LU)

The different nomenclature of the land-use profile presented in the default data from
JAXA clearly indicates the status of the land-use profile. It is common to reclassify these
nomenclatures into a certain group. We divided them into four categories based on the
objectives. The four categories were urban, agriculture, forest, water, and other. The
reclassification of the land-use profiles is shown in Figure 8c, and this information was
used in the AHP process.

3.3.4. Distance from River (DIS)

River networks were considered in this study for hydrological simulations. The small
river channels originating from the mountainous areas of the selected basins have a higher
risk of flooding during extreme rainfall. Flood inundation may easily occur along the main
tributaries of rivers in the basins. The distance from the rivers was calculated and classified
into four categories: 500 m, 1000 m, 1500 m, and >1500 m. Figure 8d shows the spatial
distribution of the distances from the river.

3.3.5. Slope Profile (SLP)

The slope profile is an important factor to consider in flood inundation. Additionally,
it is important to acknowledge that each dataset included in the study was chosen for its
relevance and importance in achieving the study’s objectives. The slope at each grid of the
selected basins was calculated using the DEM data (Figure 8e). The main purpose of this
study was to identify lowland flat lands. In general, the slope profile shows a low degree
for the flat area, while a higher degree indicates mostly mountainous regions where the
chance of flood inundation is always low. The classification of risk slopes is not the same in
many studies [16]. Based on several previous references and the topographic characteristics
of the basins, we reclassified the slope of those basins into four categories, which represent
flat, gentle, moderate, and steep profile (0–2, 2–5, 5–10, and 10–100).

3.4. Flood Susceptibility Mapping

After processing the six key influential datasets from various sources, it was important
to categorize them based on their significance and objectives to utilize them in AHP,
which is based on spatial multi-criteria analysis through a weighted overlay. A GIS-based
AHP approach was used to identify potential flood occurrences in the study. The six
datasets, INU, POP, BLD, LU, DIS, and SLP, were categorized into the first through sixth
orders, respectively. Although the selected elements were all considered to be of equal
importance, moderate importance was preferred between INUN vs. DIST and INUN vs.
SLOP, considering the higher priority of social indicators in this study. The weightages for
INU, POP, BLD, LU, DIS, and SLP were 25%, 16%, 16%, 16%, 14%, and 13%, respectively.
The consistency ratio was 3.3%, indicating acceptable inconsistency. If the consistency ratio
exceeds 10%, subjective judgment needs to be reviewed [47,48].

The flood susceptibility mapping of the Abukuma, Naka, and Natsui River basins was
developed based on the relative weight and priority of individual factors and sub-factors
causing flood inundation, as defined above. The flood susceptibility was divided into
four zones: low, moderate, high, and very high. Figure 9 shows the spatial distribution
of flood susceptibility across the three basins during the flood event. The maps revealed
a very high flood susceptibility downstream of all the river basins, while high flood risk
was also identified in many areas within these basins. In contrast, the mountainous
region near the boundary of the selected river basins had a very minimal flood risk. It is
important to note that the INU data were the primary factor in the combination of other
vulnerable factors, such as population and buildings, to generate the susceptibility map,
which was based on this single flood event (i.e., Typhoon Hagibis). Therefore, this flood
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susceptibility map should only be used for this specific event, and different events may
produce different results.

Figure 9. Flood susceptibility map of the three river basins.

3.5. Validation of Flood Risk Map

After Typhoon Hagibis in 2019, residents in flood-affected areas submitted claims
for flood disaster insurance payments to social insurance companies. These claims were
referred to as flood insurance claims data and were provided by Tokio Marine & Nichido
Fire Insurance Co., Ltd. for the selected three river basins (Figure 1). The flood insurance
claims data represent the payout ratio, which is the payout amount divided by insurance
premiums and is associated with the ZIP code level. These data enabled us to identify
flood risk zones across the basins. We hypothesized that a good relationship exists between
the developed flood susceptibility map and the insurance-claimed data for this event.
However, comparing the insurance-claimed data and flood susceptibility mapping was
not straightforward due to their mapping characteristics. The collected insurance claim
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data were based on postal addresses and were not defined at specific points due to social
security concerns. Therefore, the data were in a polygon format (combining the postal
address area), which does not indicate specific points on the map. Collecting point data
on social insurance claims is not common in Japan due to personal information security
concerns. After reviewing the insurance claims data, we found multiple insurance claims
within a single polygon area. However, we did not analyze the number of insurance claims
within each polygon area in this study.

The flood susceptibility map for the three river basins was developed at a grid res-
olution of about 250 m (Figure 10). As there were multiple flood risk zones within each
polygon of the insurance claim data, there were several ways to compare the flood risk
categories. In this study, we extracted the maximum and median values of the flood risk
category within each insurance claim data polygon. Figure 10 illustrates the flood risk
status over the insurance claim data polygons for all three river basins based on each
polygon’s maximum flood risk category. The results showed that high and very high flood
risks were prevalent in the social insurance claims polygons. However, the results are
slightly different if the median value of flood risk from the polygon data is considered.

Figure 10. Flood risk status within insurance claim polygons of the three river basins.
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To provide a more quantitative assessment, we calculated each river basin’s relative
percentage of flood risk categories. Figure 11 illustrates the relative percentage of flood
risk categories within each river basin polygon based on the median and maximum values.
As shown, high and very high flood risks were found in most cases. In the Abukuma
and Natsui River Basins, over 70% of insurance loss data were associated with high flood
risk. The results were more favorable in the case of the Naka River Basin, although a
small percentage of loss insurance data was still linked to low flood risk. It is important to
note that the insurance loss data are based on postal addresses, and the boundaries of the
claimed areas may not always correspond with the actual flood-prone locations.

Figure 11. Flood risk status and relative percentage based on the insurance claimed data of the three
river basins during the typhoon Hagibis.

4. Discussion

This study developed flood susceptibility mapping for the Abukuma, Naka, and
Natsui River basins for a specific extreme rain event, using flood inundation depth profiles
from hydrological simulations as key hazard data. The study also considered the role
of other influential factors in vulnerability environments and management measures. To
assess the usefulness of the mapping products in social insurance, the developed map was
compared with social insurance claims data under certain conditions and assumptions. The
application of simulated hydrological data for developing flood susceptibility maps, and
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the importance of considering the social insurance business, were raised in the introduction
and will be discussed in the following section.

4.1. Application of Inundation Depth to the Flood Susceptibility Mapping

In this study, the uncertainties associated with the physiographic data used in the
hydrological model setup were not analyzed, as they are beyond the scope of this study.
However, several studies have discussed the optimal scales for DEM and hydrometeoro-
logical input data [12,13,34,50]. It is possible to find the best DEM with high resolution for
a river basin in a specific area or region. A finer spatial resolution simulation with varying
temporal scales can also provide good results. A hydrological simulation of a large river
basin at a fine spatiotemporal scale may not be common [36], but spatial resolution and
accuracy improvements are needed.

Notably, radar rainfall data were used as a meteorological parameter in the RRI model
for this extreme flood event. However, there is a potential for biased rainfall data during
heavy-rain events, which was not the focus of this study. An accurate estimation of rainfall
during intense rainfall periods can be challenging, as shown in a previous study [10],
which compared radar rainfall with point rainfall data and found both overestimation and
underestimation during extreme rainfall events. In this study, we assumed that the radar
rainfall data were close to reality. One of the challenges of flood inundation analysis in
river basins is the defining of river geometries. In this study, a reference empirical equation
defined for a neighboring river basin was used. Another challenge is accounting for flood
scenarios, such as embankment failure and backwater effects, which were excluded from
the simulation. During the Typhoon Hagibis case, 140 embankments along over 70 rivers
throughout the country broke, and there were backwater effects in many areas due to record
rain. In the Abukuma River Basin, levees collapsed at 47 locations along the Abukuma
River and 16 along its tributaries. Collecting all this information and implementing its
time and location in the model setup is a significant challenge during disaster events.
Furthermore, the model did not account for some tributaries in the river basin, which may
impact the flood inundation extent in certain areas.

Although shallow flood inundation was observed in some parts of the river basins, it
was not visible in specific areas due to the limited spatial resolution of the topographic data
and other uncertainties in the model setup. To minimize uncertainties in the simulation, the
flood inundation profile of each time step of the river basins was reanalyzed. In this study,
we interpolated the frequency of the flood inundation depth (>0.5 m) to better understand
the flood impact during the entire period of the flood event. However, there could be a
chance to cover the bias area in some parts of the interpolation, which is a limitation of this
study. A more detailed analysis of the realistic interpolation of the flood inundation depth
of a specific event will be conducted in a future study to address this limitation.

It is important to note that uncertainties are inherent in any simulation, and there
is a need to minimize them to obtain more realistic results. Despite the limitations, the
hydrological simulation of the river basins was effective in developing flood risk zones
during an extreme event. The validation of the flood risk zones with the flood insurance
claim data shows that the approach adopted in this study is acceptable for flood-related
insurance policies. The developed flood risk zones can serve as a reference for managing
flood-related risks and for making appropriate decisions to support clients promptly after
the flood event.

4.2. Flood Susceptibility Mapping for Social Insurance Business

Developing a flood susceptibility map based on an AHP is a well-established approach
that has been used in many studies for various purposes. However, the critical aspect of
this method is how to select and prioritize the appropriate data relevant to the study’s
objectives. In this study, the primary goal was to define flood risk zones for specific
flood events relevant to flood insurance claims. Therefore, a careful consideration of data
selection and prioritization was crucial. The insurance industry heavily relies on hazard
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maps, and the historical dataset was an essential part of the map development in this study.
By incorporating the flood insurance claims data, the flood susceptibility map produced
in this study can be a valuable tool for social insurance companies in managing risks and
supporting their clients during and after flood events.

Previous studies have typically used historical rainfall data to create hazard maps.
However, high rainfall grids in a given area do not necessarily correspond to flooded areas,
as the hydrological characteristics of the region heavily influence flooding. To address this
limitation, we employed a novel approach in this study. Specifically, we analyzed flood
inundation depth maps from each time step of the simulated flood event, considering the
hydrological characteristics of the selected river basins. This new approach enabled us to
develop a more accurate and reliable hazard map for the river basins.

In this study, our focus was on the devastating Typhoon Hagibis, which hit Japan from
12–13 October 2019, causing extensive damage to the Tohoku, Kanto, Hokuriku, and Chubu
regions. The typhoon affected over 70 river systems and resulted in the loss of more than
90 lives in eastern Japan [30]. This event has contributed significantly to the record-high
damage claims by flood disasters in recent years, thereby straining emergency reserves
held by top insurers. The estimated losses from Typhoon Hagibis alone were expected to
exceed USD 10 billion, with many flood insurance claims filed during the event (Figure 1).

Previous studies have used flood susceptibility mapping to estimate the risk and
provide warnings before any extreme events. However, these approaches did not focus on
a specific flood event, so they may not offer a comprehensive assessment of flood risk. Our
study, on the contrary, focused on a particular event, Typhoon Hagibis, and found a strong
relationship between flood insurance claims and high flood risk zones in the selected river
basins. Field observation and investigation during a flood event can be challenging, which
highlights the importance of using our proposed method to develop flood risk zones based
on a particular extreme flood event. This would be particularly helpful to insurance-related
businesses. Future studies should consider using finer resolution data to improve flood
risk mapping.

5. Conclusions

Flooding is a widespread issue that affects thousands of people and causes significant
annual losses in Japan. The increasing trend of flood disasters in the coming days will likely
lead to even more significant losses. Therefore, it is crucial to understand and find ways
to manage the financial impacts of flood risk effectively. Various approaches have been
applied to understand the flood risk zone during flood events, focusing on the financial
aspect. Developing a flood susceptibility map of extreme events is an essential strategy for
characterizing flood risk zones during extreme rain events. It can be a valuable reference
for post-disaster management, such as the quick assessment of damaged properties and
loss of life in flood-affected areas.

In this study, we attempted to develop a flood susceptibility map of the Abukuma,
Naka and Natsui river basins using the GIS-based AHP approach for Typhoon Hagibis 2019.
The selection and proper use of data are fundamental in developing flood susceptibility
mapping for a river basin. First, we conducted hydrological simulations of all three river
basins using the RRI model. The simulated river discharge was validated with the observed
river discharge of the Abukuma and Naka River Basins, and the hydrological simulations
performed well for the selected river basins. We then extracted and analyzed the maximum
flood inundation depth over the river basins and reanalyzed the flood inundation extent of
these basins at each time step. The relative frequency of the flood inundation depth (>0.5 m)
was extracted from each grid over those basins. To ensure the visible spatial distribution of
the relative frequency of the flood inundation duration, which was a key influential data
factor in developing the flood susceptibility map, we interpolated the relative frequency of
the extracted maps. In contrast to the approach used in previous studies, such a hazard
map was entirely based on hydrological simulations, which was a new approach used in
this study. In addition, we considered other key influential factors, such as population,
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building, land use, distance from rivers, and slope profile. With the help of all six selected
influential data, we developed the flood susceptibility map over the Abukuma, Naka, and
Natsui River Basins for Typhoon Hagibis.

In conclusion, the strong agreement that was found between flood insurance claims
data and the developed flood risk categories suggests that the flood susceptibility map
could be a valuable tool for flood management and recovery efforts in the aftermath of
a flood event. Developing a flood susceptibility map focusing on a specific event could
provide practical economic guidance for insurance companies and related industries. Our
new approach, which combines hydrological simulation results and other flood causative
factors based on the financial aspects within river basins, has shown promising results
for the Abukuma, Naka, and Natsui River Basins for the extreme flood event brought by
Typhoon Hagibis. The developed flood risk mapping product could serve as a valuable
reference for future flood-related planning and decision-making. Additionally, if forecasted
rain data, such as 36 h ahead, were available, flood susceptibility mapping could be issued
earlier. Future work should improve uncertainties in hydrological analysis and consider
finer resolution data for river basins.
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