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Abstract: Low-cost UAV aerial photogrammetry and airborne lidar scanning have been widely used
in forest biomass survey and mapping. However, the feature dimension after multisource remote
sensing fusion is too high and screening key features to achieve feature dimension reduction is of
great significance for improving the accuracy and efficiency of biomass estimation. In this study,
UAYV image and point cloud data were combined to estimate and map the biomass of subtropical
forests. Firstly, a total of 173 dimensions of visible light vegetation index, texture, point cloud height,
intensity, density, canopy, and topographic features were extracted as variables. Secondly, the Kendall
Rank correlation coefficient and permutation importance (PI) index were used to identify the key
features of biomass estimation among different tree species. The random forest (RF) model and
XGBoost model finally were used to compare the accuracy of biomass estimation with different
variable sets. The experimental results showed that the point cloud height, canopy features, and
topographic factors were identified as the key parameters of the biomass estimate, which had a
significant influence on the biomass estimation of the three dominant tree species in the study area.
In addition, the differences in the importance of characteristics among the tree species were discussed.
The fusion features combined with the PI index screening and RF model achieved the best estimation
accuracy, the R2 of 0.7356, 0.8578, and 0.6823 were obtained for the three tree species, respectively.

Keywords: multi-source remote sensing fusion; feature screening; single tree scale; subtropical
arboreal forest; estimation of biomass

1. Introduction

The estimation of forest biomass, as an important index to measure the growth poten-
tial and carbon sequestration capacity of forests, and its mapping are of great significance
in forest resource surveys nowadays. How to estimate and map it quickly and accurately
is one of the urgent problems to be solved [1-3]. Traditional biomass survey methods,
based on field measurements, usually require a lot of time and high labor costs and have
difficulties in achieving highly precise and large-scale biomass mapping [4-8]. With the
development of remote sensing, UAV remote sensing enables the rapid, non-destructive,
and accurate mapping of biomass with the advantages of flexible operation, high resolution,
and non-contact sensing [9,10].

Vegetation spectral information, such as the vegetation index and image texture, can
fully express leaf color, vegetation richness, and health status [11,12]. In recent years,
some studies have applied the visible light spectrum [13], image texture [14,15], and

Sustainability 2023, 15, 1676. https:/ /doi.org/10.3390/su15021676

https:/ /www.mdpi.com/journal/sustainability


https://doi.org/10.3390/su15021676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4168-6462
https://doi.org/10.3390/su15021676
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021676?type=check_update&version=3

Sustainability 2023, 15, 1676

2 of 26

visible vegetation index [16-18] to estimate vegetation biomass by using the practical and
inexpensive measurement of UAVs equipped with cameras. Both Wang Li et al. (2016) [19]
and Bo Li et al. (2020) [20] have used vegetation index (VI) features and vegetation height-
related variables obtained using aerial photography to estimate aboveground biomass and
forecast the yield of maize and potato, respectively. Yinuo Liu et al. (2019) [21] have used
vegetation index and texture (Gray Level Co-occurrence Matrix, GLCM) of multi-spectral
images for biomass estimation of rapeseed in winter.

Airborne point cloud data can easily extract features such as the vegetation height,
density and topography, vertical structure, and canopy area [22-24] easily, which comple-
ment the vegetation index and texture features of images. It has been widely introduced
into biomass estimation studies. Shengli Tao et al. (2014) [25] have obtained the single-tree
canopy volume based on point cloud clustering segmentation and used it for the accurate
estimation of aboveground biomass (AGB) in forests. Sami Ullah et al. (2017) [26] have
extracted forest height- and density-related variables from airborne laser point clouds
and aerial photographic point clouds to estimate forest timber stock. Linghan Gao et al.
(2022) [27] have estimated the aboveground biomass of plantations of different tree species
by extracting variables related to tree canopies, topography, point cloud height, and density.

In the study of biomass estimation based on multi-source remote sensing, the tradi-
tional linear parameter model has problems of nonlinearity and multicollinearity due to its
limited statistical assumptions. As a result, non-parametric modeling methods are widely
used in biomass estimation research, which solves the problems of high dimensionality,
high redundancy, and small sample sizes in multi-source remote sensing data [28-30]. Coeli
M. Hoover et al. (2018) [31] compared random forest (RF) with the traditional biomass
estimation methods and proved that the estimate from RF was better than the general
estimate by using the average canopy height and cross-sectional area, as proposed by G.P.
Asner et al. (2011) [32]. In addition, Yue Zhang et al. (2021) [33] used the hyper-spectral
narrowband vegetation index and crop height from UAVs to estimate maize bio-mass and
obtained better results in estimating maize biomass using the XGBoost model than with
the stepwise regression and RF regression models.

In this study, the visible vegetation index and texture features, airborne lidar point
cloud intensity, density, height, and other features, as well as the canopy and topographic
factors, were fused as input variables of the model. By comparing different variable combi-
nations and feature selection methods, the biomasses of the three dominant tree species in
the study area were estimated by using RF and XGBoost classical models. Additionally, the
differences in the characteristics and importance of the various tree species were analyzed.
The main objectives of this study are: (1) to determine the key characteristic parameters
of subtropical tree biomass regression based on UAV multi-source remote sensing fusion
(image and point cloud); (2) to compare the key characteristics of biomass estimation among
different tree species; and (3) to realize the accurate estimation and mapping of single-tree
scale biomass of arboreal forest by filtrating the non-important features and provide a
reference for the research on multi-source remote sensing fusion and accurate biomass
estimation.

2. Materials and Methods
2.1. Study Area

The study area is located in the Kuandiba forest area (24°43'-24°56' N, 102°28'-102°38’
E) of the Haikou Forest Farm, Xishan District, Kunming City, Yunnan Province. It demon-
strates the mountain topography of the Central Yunnan Plateau, with a “lake plateau”
landform and subtropical monsoon climate. The average altitude is 1900-2200 m. The
average annual temperature is 14.6 °C, with the highest of 34.4 °C and the lowest of —7.8 °C.
The average annual rainfall is 909.7 mm, which happens in June and July mostly. The
forest coverage rate in the study area was 80.46% and the main tree types were: Pinus
Armandii.Franch, Pinus Yunnanensis, Sabina Chinensis, Cupressus Lusitanica, Alnus Japonica
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Steud, Eucalyptus robusta Smith, Eucommia Ulmoides Oliver, and China fir. The Figure 1 has
showed the location of the study area, the point cloud data and orthophoto image.
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Figure 1. Location of the study area (a) is the location of Xishan District. (b) is the Haikou Forest
Farm. (c) is the side view of point cloud data in the study area after elevation normalization and
filtering. (d) is the UAV orthophoto image and sample distribution in study area.

2.2. Field Data Collection

The tree diameter at breast height (DBH) was obtained by measuring the circumference
of the tree at 1.3 m manually. The heights of the trees were measured individually with
their location recorded. The experiment was carried out on the three types of trees, namely,
Cupressus lusitanica (CL), Pinus yunnanensis (PY), and Deciduous Broad-leaved Forest (DBF).
These abbreviations will be used extensively to represent the names of the three tree species
in the below text. A total of 174 samples of the three tree types were measured. The
Deciduous Broad-Leaved Forest samples mainly included Olea europaea, Eucommia Ulmoides
Oliver, Cinnamomum camphora (L.) Presl., Metasequoia glyptostroboides, and Eucalyptus species,
which were uniformly classified as the DBF due to the lack of its relevant regional biomass
equation or the small quantity. The sample sizes of the trees species are provided in Table 1
and the tree height and DBH distribution of each sample are shown in Figure 2.
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Table 1. Sample size.
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Figure 2. The tree height and DBH distribution map of samples. (a) Cupressus lusitanica, (b) Pinus

(©)

yunnanensis, and (c) Deciduous Broad-leaved Forest.

The true biomass values of our experimental samples were obtained by using the
binary biomass allometric equation of the tree height and DBH in the studies of Pan
et al. [34] and Zhou et al. [35]. The application of these equations is limited to China
(subtropical DBF) or the southwestern provinces of China (CL, PY). The allometric equation
used in the study is shown in Table 2.

Table 2. Biomass allometric equation.

Species Class Equation R? Reference
Trunk W = 38.57447 x (D2H)0-88545 0.99
Cupressus Branch W = 1.42899 x (D2H)1-20845 0.98 [34]
lusitanica Leaf W = 6.00855 x (D2H)0-994%4 0.99
Root W = 4.23742 x (D2H)?-93532 0.99
Trunk W = 0.009 x (D2H)1-044 0.98
Pinus Branch W = 0.0008 x (D2H)1-151 0.92 (35]
yunnanensis Leaf W = 0.006 x (D2H)?8>3 0.98 i
Root W = 0.009 x (D2H)%971 0.99
Decid Trunk W = 0.0263 x (D2H)09695 0.98
5 ec; l”"“S p Branch W = 0.0232 x (D2H)"-8055 0.97 [35]
m;o;:s‘;” Leaf W = 0.0075 x (D2H)"-8015 0.96 :
Root W = 0.0381 x (D2H)"-762 0.94

Note: Among them, the tree height and DBH of Cupressus lusitanica are in meters. The other two types of tree
height are in meters and the DBHs are in centimeters. In addition, the biomass is measured in kilograms.

2.3. UAV Data Collection

A DJIM300 (SZ DJI Technology Co., Ltd.; Shenzhen, China) multi-rotor unmanned
aerial vehicle (UAV), equipped with an AA450 Lidar sensor ( Shanghai Huace Navigation
Technology Ltd.; Shanghai, China) and a Zenmuse P1 camera (SZ DJI Technology Co., Ltd.;
Shenzhen, China), was used in this experiment. The technical parameters of the equipment
are shown in Table 3. The flight height of the UAV is 75 m, the route overlap rate of aerial
photography is 80%, and the side overlap rate is 70%.
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Table 3. Equipment technical parameters.

Name Parameters

Scanning frequency: 240,000 points/s (single echo),
AAA450 airborne lidar sensor 720,000 points/s (triple echo); maximum range: 450 m;
field angle: 70.4°(Horizontal) x 4.5°(Vertical)

Focal length: 24 mm;

Zenmuse P1 camera CCD size: 35.9 x 24 mm; Effective pixels: 45 million

2.4. Data Preprocessing
2.4.1. Preprocessing of Image and Point Cloud

The Pix-4D 4.5.6 software was used to process the original images collected by the
UAVs with orthophotos generated in the *.tif format. The spatial resolution of the or-
thophoto results was 5 cm. The georeference of these images was carried out through
5 ground control points.

The airborne Lidar point cloud was spliced using CHC Navigation Co-Pre software.
The UAV RTK differential post-processing was carried out using the base station at the
ground control point (GCP). The result density was 382 points per square meter. The
coordinates of the GCP and image phase control point were measured using the GPS equip-
ment of the Galaxy-1 (South Surveying and Mapping Technology Co., LTD., Guangzhou,
China). The point cloud data denoising, filtering, CHM production, and other processes of
preprocessing were implemented using Lidar360 software (Beijing Green Valley Technology
Co., LTD., Beijing, China). Lidar 360 is an efficient point cloud post-processing software,
including a variety of point cloud processing tools, that is often used for the visual editing
of point cloud data and the production of various geospatial products. In addition, it has
been widely used in forestry point cloud data processing.

2.4.2. Segmentation in Single Tree Scale and Classification of Dominant Species

In this paper, the overlapping rectangular part of the two-source data was used as the
study area. Using Lidar-360 software, the airborne point cloud data were used to construct
CHM with an interval space of 0.5 m. A minimum tree height of 2 m, a buffer area of
50 pixels, a Gaussian smoothing factor of 0.7, and a radius of 5 pixels were used to segment
the study forest into individual trees. By integrating the point cloud structure features
and image index features of the single tree area, the sample data were used to classify the
single tree species one by one. The sample test accuracy of the classification experiment
was better than 99.4%. The classification result is shown in Table 4 and the classification
result diagram is shown in Figure 3.

Table 4. Statistical results of tree classification in the study area.

Specie CL PY DBF Total
Quantity 388 343 1759 2490
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Figure 3. The classification result map of tree species.

2.4.3. Spectral Features Extraction of the Images

(1) Spectral and visible light vegetation index feature extraction

The visible light image of UAV reflects the reflection of trees to visible light through the
three-color channels of R, G, and B. The visible light color channel contains little vegetation
information. However, many previous studies have shown that some combinatorial opera-
tion of different color channels [14-16] can better reflect vegetation information. Therefore,
in this paper, 25 commonly used visible light vegetation indexes and 3-color channels were
selected to form 28 vegetation index variables. The selected vegetation index variables are
shown in Table 5.
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Table 5. Information of vegetation index variables.

Variable Name Abbreviation Variable Description Reference
Red band R R=R —
Green band G G=G —
Blue band B B=B —
Normalized red band r r=R/R+G+B) [14]
Normalized green band g g=G/(R+G+B) [14]
Normalized blue band b b=B/(R+G +B) [14]
Red—green ratio index RGRI RGRI=r1/g [14]
Green-blue ratio index GBRI GBRI=g/b [14]
Red-blue ratio index RBRI RBVI=r/b [14]
Red-blue difference index RBDI RBDI=r—b [14]
Red-blue add index RBAI RBAI=r+b [14]
Green-blue difference index GBDI GBDI=g—b [14]
Red-blue vegetation index RBVI RBVI=(r — b)/(r +b) [14]
Modified red-green-blue vegetation index MRGBVI MRGBVI=( —b —g)/(r+g) [14]
Modified green-red vegetation index MGRVI MGRVI = (g2 — 12)/(g? + 1?) [14]
Red-green-blue vegetation index RGBVI RGBVI = (g2 —bxr)/ (g2 +b xr) [14]
Green-red vegetation index GRVI GRVI=(g —r)/(g+71) [14]
Green leaf add index GLA GLA=(2xg—r+b)/2xg+r+b) [14]
Green leaf index GLI GLI=2xg—-—r—b)/2xg+1r+Db) [14]
Excess red index ExR ExR=14xr—g [14]
Excess green index ExG ExG=2xg—-r—Db [14]
Excess green minus excess red index ExGR ExGR=ExG-14 xr—g [14]
Color index of vegetation CIVE CIVE = 0'441 >l<) 1180722;}1; & +0.3856 [14]
Vegetation atmospheric resistance index VARI VARI = (g —1)/(g+1 —Db) [14]
Warbeck index WI WI=(g—-b)/(r—g) [14]
Normalized difference index NDI NDI = (r — g)/(r + g+ 0.01) [15]
Normalized green-blue difference index NGBVI NGBDI = (g —b)/(g +b) [15]
Vegetation index VEG VEG = g/(r* x b'72); (a = 0.667) [16]

(2) Image texture feature extraction

The gray level co-occurrence matrix (GLCM) [36], generally recognized as mature
and effective, was used for texture feature extraction. The mean variance, homogeneity,
contrast, dissimilarity, entropy, angular second moment (ASM), and correlation were used
as statistical features. Multi-scale and multi-direction texture features were extracted with
an interval of 2 and the four symmetric directions of angle 0, 45, 90, and 135. The calculation
formulas of the texture statistics of images used in this study are shown in Table 6.

Table 6. Calculation formulas of statistical information for the texture of images.

Variable Name Abbreviation Variable Description Reference
Mean Mean Mean =} }5 P(ij) * i
Variance Var Variance =} 3 p (i) * (i— Mean)2
Homogeneity Homo Homogeneity = }; 3 Pij) * 15 (37j)z
Contrast Con Contrast = ¥; ¥ P * (i— j)Z [36]
Dissimilarity Dis Dissimilarity =} P(ij) * i —j
Entropy Ent Entropy =} }p i) * In(i, j)
ASM ASM ASM =Y, Yp (i,j)2

Correlation Cor Correlation = ) } ((i — Mean)  (j — Mean) x p(i/j)z /Variance)
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2.4.4. Structural Features Extraction of Point Cloud

Because the airborne Lidar point cloud can truly and intuitively reflect the height,
density, and vertical structure information of trees, it greatly compensates for the lack of
image data in the vertical structure features of trees. In this paper, Lidar-360 software
was used to extract the 101-dimensional point cloud structural features, including tree
height features, density features, intensity features, canopy cover, etc. These descriptions of
features are shown in Tables 7-9. They showed the height correlation features of trees, the
intensity correlation variables, and the density correlation characteristics of point clouds
and other information, respectively.

Table 7. Point cloud height feature information of trees.

Variable Name Abbreviation Quantity Variable Description
Average absolute deviation E-ADD 1 V= w
Canopy relief rate E-CRR 1 V = Guen=Zun
ma)s(o/o min
. . AlHyo, = Y20 Z;(X =
A late heigh 1 E-AIH 1 X% = =0~
ccumuiate height percentiles > 1,5,10,20,25,30,40,50,60,70,75,80,90,95,99)
Interquartile range of - _
accumulate height percentile E-AIH_IQ 1 AIH_IQ = AlH7se, — AlHpsy,
Variable coefficient E-CV 1 V= ZZL‘d X 100%
. . mean * .,
Kurtosis E-Kurtosis 1 Kurtosis — ﬁzi:;izﬁz)
Median of median absolute . The median absolute deviation of the median
.. E-Mad median 1 . . .
deviation height value at all points in the region.
Maximum, minimum, mean, E-max, E-min, E-mean, The maximum, minimum, mean, median,
median, skewness, standard E-median, E-skewness, E-stan, 7 skewness, standard deviation, and variance of all
deviation, and variance and E-var point heights in the region.
. 3 _ . /oaz
Quadratic power mean E-SMS 1 V= L
The mean to the third power E-CMC 1 V= iuz
n
. . Elev = Zxo, (X =
Percentile of height E-P 15 1,5,10,20,25,30,40,50,60,70,75,80,90,95,99)
Interquartile range of E-PIQ 1 V = Elevysy, — Elevys,

Percentile of height

Table 8. Point cloud intensity feature information of trees.

Variable Name Abbreviation Quantity Variable Description
Mean absolute deviation I-ADD 1 V= w
Accumulate intensity LAILL 15 Allyy, = Y0 (X =
percentiles 1,5,10,20,25,30,40,50,60,70,75,80,90,95,99)
Variable coefficient -CVv 1 V= IIL"‘ X 100%
i . ' Ly -t
Kurtosis I-Kurtosis 1 Kurtosis — =1 14( )
Median of median absolute . The median absolute deviation of the median
.. I-Mad median 1 . . L. .
deviation intensity value at all points in the region.
Maximum, minimum, mean, I-max, I-min, I-mean, The maximum, minimum, mean, median,
median, skewness, standard I-median, I-skewness, I-stan, 7 skewness, standard deviation, and variance of
deviation, and variance and I-var intensity values of all points in the region.
. . . Int = Iy, (X =1, 5, 10, 20, 25, 30, 40, 50,
Percentile of intensity I-P 15 60, 70, 75, 80, 90, 95, and 99)
Interquartile range of I-PIQ 1 V = Intysy, — Intyso,

percentile of intensity
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Table 9. Point cloud density and other feature information of trees.

Variable Name

Abbreviation Quantity Variable Description

Density variable

In the region, the point cloud data are divided into
ten equal height slices from low to high and the
proportion of echo numbers in each layer is the

corresponding density variable.

D-M 10

Canopy cover

CC = s (nveg is the number of vegetation points,

CC 1 Niotal . .
Nyota] is the total number of points)

Leaf area index

LAl = M (ang is the average scan Angle,

LAI 1
GF is the gap rate, and k is the extinction coefficient)

Gap Fraction

GF = ng’;’l““d (Nground is the number of ground points

GF 1 whose height is lower than the height threshold and
n is the total number of points)

2.4.5. Canopy and Topographic Features Extraction

In addition to the corresponding height, intensity, and density of the point cloud data,
the characteristics of the crown diameter, area, volume, and tree height associated with
biomass can be extracted after single-tree segmentation of the point cloud data. Besides,
different topographic distributions have non-negligible effects on the trend of water pooling,
soil surface water content, and accumulation of soil surface humus. Therefore, 8 main
topographic factors, including elevation, slope, aspect, slope length, slope variability, aspect
variability, topographic relief, and ground roughness, were selected to measure the impact
of topography characteristics on biomass estimation. These features used for biomass
estimation are shown in Table 10.

Table 10. The information of canopy and topography features.

Variable Name Abbreviation Variable Description
Elevation H H=H
Slope Slope slope = slope
Aspect Aspect aspect = aspect
Slope Length SL SL = DEM/ sin( 51011’8%*“)
Slope Variability SOS SOS = slope of slope
Aspect Variability SOA SOA = slope of aspect
Terrain fluctuates degree TFD TFD = maxDEM — minDEM (Neighborhood range = 12)
Terrain Roughness TR TR=1/ Cos(slolp%)

Crown Diameter CD The average diameter of the projected region of crown amplitude.
Tree Height TreeH The height difference between the top of the tree and the ground.
Crown Area CA The area of the projected region of crown amplitude

Crown Volume Ccv The volume of the canopy of a tree.

2.5. Statistical Analysis
2.5.1. Correlation Analysis

Correlation analysis is necessary to screen the feature variables and eliminate redun-
dant feature dimensions with little contributions, in viewing the possibility of redundancy
between homologous and heterologous data features as well as the contribution of features
to the model decision. However, the traditional Pearson and Spearman correlation coeffi-
cient analyses require high-quality data and have the limitation of mainly solving linear
correlation problems. Thus, this study introduced Kendall Rank correlation coefficient,
which can measure the correlation of nonlinear data. It can determine correlation through
the ranking consistency between two feature vectors and has better robustness compared
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to the commonly used Pearson and Spearman correlation coefficients [37]. The calculation
formula is as follows:
ne —ng
T=— 1
in(n—1) ™
Among them, n. is the logarithm of vectors with the same ordering, ng is the logarithm
of vectors with different ordering, and n is the sample size in total. The value range of
the Kendall Rank correlation coefficient is between (-1 and 1). The larger the coefficient
absolute value, the higher the correlation is. The result (0.8, 1) indicates a very strong
correlation, (0.6, 0.8) indicates a strong correlation, (0.4, 6) indicates a moderate correlation,
(0.2, 0.4) indicates a weak correlation, and (0, 0.2) indicates a very weak correlation.

2.5.2. Permutation Importance Index Analysis

A machine learning algorithm based on a decision tree can determine the relative
importance of each feature based on the measurement of impurity. However, such meth-
ods tend to amplify the importance of high-cardinality features and continuous features.
Therefore, this study adopted the permutation importance (PI) index to measure feature
importance, which was evaluated by observing the effect of the random rearrangement of
each feature dimension on the model accuracy [38]. It has the advantages of convenient
calculation, accurate feature evaluation, and good interpretability. The calculation steps are
as follows.

Step 1: Train the model.

Step 2: Shuffle the columns of the feature data to be analyzed and analyze the impor-
tance of the feature vector by evaluating the change in accuracy.

Step 3: Restore the feature data and repeat Step 2 to analyze other feature vectors.

Because of the randomness of the single shuffled data, the experiment was repeated to
evaluate the importance of the PI index generally.

2.6. Modeling
2.6.1. Random Forest

Random forest is a classical algorithm using a Bagging integration strategy. This
algorithm integrates a large number of decision trees as the basic model. By random,
put back a part of the data and features and the weak decision trees are integrated into a
powerful model. Because this algorithm can deal with high-dimensional data and is not
easy to overfit, it has been widely used in biomass estimation [31]. The key parameters of
the algorithm are as follows: The number of decision trees (n_estimators): The greater the
number of decision trees, the better the model effect will be and it will tend to be stable after
reaching a certain number. Maximum tree depth (max_depth): It directly represents the
complexity of the model. The maximum number of input features per tree (max_features):
Increasing the number usually improves the model performance, but, at the same time,
it reduces the tree diversity. In addition, the three key parameters are directly related to
the complexity of the model. The larger the number, the more complex the model and the
slower the processing speed.

2.6.2. XGBoost

Extreme gradient boosting (XGBoost) is an excellent algorithm improved on the
basis of a gradient boosting decision tree (GBDT), in which, the regularization term is
added to control its complexity and improve its generalization ability effectively [39].
Besides, this algorithm is widely used in many machine learning competitions after it is
processed by efficient parallelization. Its key parameters include the number of decision
trees (n_estimators), the maximum depth of the tree (max_depth), and the learning rate of
the gradient descent (learning_rate). The learning rate can reduce the weight of each step
and cause the model to be more robust. If the learning rate is too large, the accuracy will
decrease, but if the value is too small, the model will run slowly.
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2.6.3. Grid Search

Grid Search traverses all the parameter settings by setting the adjustment range of
parameters and sampling method of exhaustion and uses the parameter combination with
the best score as the best result. This method can fully exploit the estimation performance
of each model and ensure the consistency of the experimental environment. Thus, it is
widely used in various machine learning classifications and predictions.

2.6.4. Experimental Environment

The experimental environment of this study is AMD Ryzen-5 six-core CPU, GTX-1650
4 G GPU, 16 G memory, and Windows10 operating system. The software platform is
MATLAB 2022a, Anaconda 3, and Python 3.7.

2.6.5. Model Evaluation Method

In order to compare the accuracy differences of different biomass estimation results,
the root mean square error (RMSE) and R-Square coefficient of determination (R-square)
were selected as the indexes to evaluate the estimation accuracy. The calculation formulas
were as follows. In this paper, the ratio of 7:3 was adopted to randomly divide the training
set and the test set. The accuracy and fitting performance of the model were verified by
comparing the difference of evaluation indexes between the training set and the test set of
different tree species.

AN o2
RMSE = 5; (fi—v,) ()
T (- y)
RZ=1- 1;172 3)
'§1 (¥ —vi)

where, RMSE represents the deviation between the estimated result and the true value.
The smaller the RMSE is, the smaller the deviation is. The numerator of R? represents the
sum of the squared variance of the predicted value and the true value and the denominator
represents the sum of the squared variance of the true value and the mean. Its value ranges
from 0 to 1. A larger R? indicates a better estimation effect.

3. Results
3.1. Biomass Statistical Analysis of Tree Species Samples

The statistical information of the sample biomass calculated by the binary biomass
equation is shown in Table 11. The results showed that the biomass distribution of the
Cupressus lusitanica (CL) and the Deciduous Broad-leaved Forest (DBF) was uniform. However,
the sample biomass of Pinus yunnanensis (PY) has a large difference with a variance of
64.533 kg and the largest weight span of the sample biomass was 273.294 kg.

Table 11. Biomass statistics of tree samples.

Class Number Minimum (kg) Maximum (kg) Mean (kg) Variance (kg)

CL 36 5.086 81.560 26.597 19.735
PY 31 2.552 275.846 63.785 64.533
DBF 107 3.652 98.689 28.753 17.735

3.2. Feature Analysis
3.2.1. Correlation Analysis

By calculating the Kendall Rank coefficient between the multi-sourced features, we
obtained the heat maps of the absolute value of the correlation coefficient, as shown in
Figures 4-6. They clearly showed the degree of correlation among the features of different
tree species. The X axis and the Y axis of the heat map both contain 173 dimensional-feature
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variables, a dependent variable, biomass, and a total of 174 calculation objects. The absolute
value of the correlation between variables were rendered by gradients from blue to red.
The closer the color is to red, the greater the correlation. The closer the color is to blue, the
smaller the correlation. In addition, Figures 4—6 have separately enlarged the heat maps of
feature correlation coefficients for objects 1-58, 59-116, and 117-174, which cause them to
be easier to observe.
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Figure 4. Heat map of absolute value of characteristic correlation coefficient of the CL.
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Figure 5. Heat map of absolute value of characteristic correlation coefficient of the PY.
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Figure 6. Heat map of absolute value of characteristic correlation coefficient of the DBF.

It was evident from the heat maps that the correlations of the traits between the
different tree species were not the same. There were a large number of highly correlated
feature pairs, most of which were clustered in the percentile and cumulative percentile
features of the point cloud height and intensity features. In addition, the correlation
between the homologous features was higher, whereas that between the heterologous
features was lower.

The experiment showed that there were 411 pairs of features that were highly cor-
related in the Cupressus lusitanica, including 57 dimensional image indexes and texture
features, 74 dimensional point cloud structural parameter features, and 6 dimensional
canopy and topographic features. Additionally, 117 dimensional features were elimi-
nated in the Cupressus lusitanica. There were 640 pairs of highly correlated features in
the Pinus yunnanensis, involving a total of 132 dimensional features, i.e., 50 dimensional
image features, 76 dimensional point cloud structural features, and 6 dimensional canopy
and topographic features. Finally, 114 dimensional features were eliminated in the Pinus
yunnanensis and, for the Deciduous Broad-leaved Forest, there were 758 pairs of features
highly correlated, including 136 dimensional features, i.e., 57 dimensional image features,
72 dimensional point cloud features, and 7 other dimensional features. The 123 dimen-
sional features were eliminated in the Deciduous Broad-leaved Forest. Table 12 shows the
retained feature dimension information of each tree species after being filtered by the
multicollinearity analysis.
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Table 12. The feature information of each tree species were retained after multicollinearity analysis.

Tree Species

Quantity

Characteristics of Abbreviation

CL

56

R,G,B,1,g,RGRI,GBRI,VEG,0-Mean,0-Dis,45-Mean,45-Dis, 90-Mean,90-Var,90-Dis, 135-
Mean,CanopyCover,LALE-AAD,E-CRR E-AIH1st,E-AIHIQ,E-CV,E-PIQ E-Kurtosis,E-
Madmedian,E-Min,E-Skewness,D-M0,D-M1,D-M2,D-M3,D-M4,D-M5,D-M6,D-M7,D-M8,D-
MO9,I-AAD,I-CV,I-AlI90th,I-Kurtosis, I-Madmedian,I-Max,I-Min,I-Skewness,I-PIQ, TreeHeight,C-
Diameter,C-Volume,H,Slope,Aspect,Slopelength,SOS,SOA

pY

59

R,G,B,1,g,b,RGRI,GBRI,VARI, VEG,0-Mean,0-Dis,45-Mean,45-Dis,45-Ent,45- ASM,45-Cor,90-
Var,90-Dis,135-Mean,CanopyCover,GapFraction, LALE-AAD,E-CRR,E-AIHIQ,E-CVE-
Kurtosis,D-M0,D-M1,D-M2,D-M3,D-M4,D-M5,D-M6,D-M7,D-M8,D-M9,I-AAD,I-CV I-Alllst,I-
AII99th, I-Kurtosis, I-Madmedian,I-Max,I-Min,I-Skewness,I-Variance,I-P1st,I-PIQ, TreeHeight,C-
Diameter,C-Volume,H,Slope,Aspect,SlopeL,SOS,SOA

DBF

50

R,G,B,RGRI,GBRI,ExGR,0-Mean,0-Dis,45-Mean,90-Dis,135-
Mean,CanopyCover,GapFraction, LALE-CRR,E-AIH1st,E-CV,E-Kurtosis,E-M,E-Skewness,D-
MO0,D-M1,D-M2,D-M3,D-M4,D-M5,D-M6,D-M7,D-M8,D-M9,I-AAD,I-CV,I-All1st, I-AII99th,I-

Kurtosis,I-Madmedian,I-Max,I-Min,I-Skewness,I-P1st,I-P10th,I-PIQ, TreeHeight,C-
Diameter,H,Slope,Aspect,Slopelength,SOS,SOA

In addition to the multicollinearity analysis of the variables, the correlation analysis
between the independent variables and biomass can reflect the importance of characteris-
tics. The correlation of each tree species between the biomass and variables is shown in
Figures 7-9, which reflect the rankings of the top 32 correlation absolute values of each
tree species. The absolute value range of correlation is [0-1]; a larger value indicates a
stronger correlation. In addition, the threshold of correlation for absolute value is set as 0.1.
When the absolute value of the correlation coefficient between a variable and biomass is
lower than 0.1, it needs to be eliminated as it indicates no correlation. Without additional
multicollinearity analysis, the feature information can be retained after correlation analysis,
as shown in Table 13.
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Figure 7. Ranking the 1-32 correlation characteristics of the CL.
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Figure 8. Ranking the 1-32 correlation characteristics of the PY.
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Figure 9. Ranking the 1-32 correlation characteristics of the DBF.
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Table 13. The characteristic information retained after filtering the correlation of each tree species
variable.

Tree Species

Quantity

Characteristics of Abbreviation

CL

70

r,RBDI,GBDILRBVI,RGBDVI,WI,NGBDI,90-Dis,90-Ent,90-ASM,90-Cor,GapFraction, E-AAD,E-
AIH70th,E-AIH75th, E-ATH80th, E-AIH90th, E-AIH95th, E-ATH99th, E-ATHIQ,E-CMC,E-CV,E-
PIQ,E-Madmedian, E-Max, E-P40th,E-P50th,E-P60th,E-P70th,E-P75th,E-P80th,E-P90th,E-P95th, E-
P99th, E-Skewness,E-SMS,E-Stddev,E-variance, D-M0,D-M1,D-M2,D-M3,D-M4,D-M5,D-M6,1-
ALL1st,I-ALL5th,I-ALL10th,I-ALL20th,I-ALL25th,I-ALL30th,I-ALL40th,I-Max,I-Mean,I-
Median,I-P1st,I-P8th,I-P9th,I-P10th,I-P11th,I-P12th,I-P13th, TreeHeight,C-diameter,C-area,C-
Volume,Slope,Aspect,QFD,Groughness

PY

87

R,G,B,GBRI,RBRI,MRBVI,RBVI,GLA, ExGR,VARI,VEG,0-Mean,0-Var,0-Homo,0-Can,0-Dis,0-
Ent,0-ASM,0-Cor,45-Mean,45-Var,45-Homo,135-Dis,135-Ent,135-ASM, 135-
Cor,CanopyCover,GapFraction,E-AAD,E-CRR,E-AIH1st,E-AIH5th, E-AIH10th, E-ATH20th,E-
ATH25th,E-AIH30th,E-AIH40th,E-AIH50th, E-ATIH60th, E-ATH70th, E-AIH75th, E-AIH80th, E-
AIH90th,E-AIH95th, E-AIH99th, E-AIHIQ,E-CMC,E-PIQ,E-Kurtosis, E-Madmedian, E-Max, E-
Min,E-Mean,E-Median,E-P1st,E-P5th,E-P10th,E-P20th,E-P25th,E-P30th,E-P40th,E-P50th,E-
P60th,E-P70th,E-P75th,E-P80th,E-P90th,E-P95th,E-P99th,E-SMS, E-Stddev,E-variance,D-M6,D-
M7,D-M8,D-M9,I-CV,TreeHeight,C-diameter,C-area,C-
Volume,H,Slope,Aspect,SOS,QFD,Groughness

DBF

b,GBRI,RBRI,MRBVI,RBVI,GLA,ExGR,VARI,VEG,45-Mean,45-Var,45-Homo,45-Can,135-
Mean,135-Var,135-Homo, 135-Can,CanopyCover,GapFraction,E-AAD,E-CRR,E-AIH1st,E-
AIH5th, E-ATH10th,E-ATH20th,E-AIH25th, E-ATH30th, E-AIH40th, E-AIH50th, E-AIH60th, E-
AIH70th,E-AIH75th,E-AIH80th,E-ATH90th, E-ATH95th, E-ATH99th, E-ATHIQ,E-CMC,E-CV,E-
PIQ,E-Madmedian,E-Max, E-Mean,E-Median,E-P1st, E-P5th,E-P10th,E-P20th,E-P25th, E-P30th, E-
P40th,E-P50th,E-P60th,E-P70th,E-P75th, E-P80th,E-P90th,E-P95th,E-P99th,E-SMS, E-Stddev, E-
variance,D-M6,D-M9,I-CV,I-ALL90th,I-Kurtosis,I-Max,I-Skewness, TreeHeight,C-diameter,C-
area,C-Volume,Slope,SOS,QFD,Groughness

The analysis of the correlation between the feature variables and biomass showed
great heterogeneity among the different tree species. A higher correlation was observed
between the biomass of the Cupressus lusitanica and the variables of point cloud height and
density, as well as the canopy and topographic features. However, the correlations of the
vegetation index, texture, and point cloud intensity characteristics with biomass of this
species were lower than the top 32. For the Pinus yunnanensis, the correlation of the point
cloud height variable was the highest and the correlation between the vegetation index
and tree height was also in the top 32. However, there was no observed correlation with
the density variables, as in that observed among the Cupressus lusitanica. The Deciduous
Broad-leaved Forest showed strong correlations with the image texture and point cloud
height variables. In conclusion, the point cloud height related variables were generally
strongly correlated with the biomass of different tree species. The features related to the
point cloud, tree canopy, and topography were more preserved after screening. The visible
light vegetation index and texture features related to the image lacked the correlation
with biomass. In Table 13, more than half or even five-sixths of the image variables were
excluded for each of the three tree species.

3.2.2. Permutation Importance Index of Features

In this section, RF is used as the base model for permutation importance (PI) analysis.
The maximum depth of the decision trees was set to 5, the number of decision trees was set
to 500, and the training set and the test set were divided by 7:3. The Pl index was evaluated
through ten repeated experiments to judge the importance of each characteristic of different
tree species for biomass regression. The PI index results are shown in Figure 10. After
screening, the mean value of the tenfold PI index was greater than 0, indicating a positive
effect on the estimation model. The information on the features that need to be retained is
shown in Table 14.
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Figure 10. PI index ranking of some important variables. (a) The top 1-32 PI importance characteris-
tics of the CL. (b) The top 33-64 Pl importance characteristics of the CL. (c) The top 1-32 Pl importance
characteristics of the PY. (d) The top 33-64 PI importance characteristics of the PY. (e) The top 1-32 PI
importance characteristics of the DBF. (f) The top 33-64 PI importance characteristics of the DBF.
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Table 14. The feature information retained after filtering the variable PI index of each tree species.

Tree Species Quantity Characteristics of Abbreviation

G,B,b,GBRI,RBDI,GBDI,RBVI,RGBDVI,RGBVI,GLI,ExG,WI,NGBDI,0-Dis,0-ASM,45-Var,45-
Dis,45-ASM,90-Can,135-Can,135-Ent,135-ASM,E-A AD,E-AIH99th, E-AIHIQ,E-CMC,E-CV,E-
CL 53 Kurtosis,E-Madmedian,E-P1st,E-Stddev,E-variance, D-M1,D-M3,D-M4,D-M5,D-M6,D-M7,D-
MO9,1-ALL10th,I-ALL90th,I-ALL95th,I-Kurtosis,]I-Madmedian,I-Max,I-Min,I-P1st,I-P13th,I-
P18th,I-PIQ,C-area,C-Volume H

R,G,r,RGRI,RBRI,RBDI,RGBDVI,MRBVI,ExGR,VARI,NGBDI,VEG,0-Var,0-Homo,0-Dis,0-Ent,0-
ASM,0-Cor,45-Ent,45-Cor,90-Homo,135-Dis,135-Ent,135-ASM,135-Cor,E-AAD,E-CRR E-
AIH1st,E-AIH5th, E-ATH10th,E-AIH20th,E-AIH25th, E-ATH40th, E-ATH50th, E-ATH60th, E-
ATH70th,E-ATH80th,E-AIH90th,E-AIH95th, E-ATH99th, E-ATHIQ,E-CMC,E-PIQ,E-
Madmedian,E-Max,E-Mean, E-Median,E-P5th,E-P20th,E-P25th,E-P30th,E-P40th,E-P50th,E-
P60th,E-P70th,E-P75th,E-P90th, E-P95th,E-P99th,E-SMS, E-variance, D-M1,D-M2,D-M4,D-M7,D-
M9,1-AAD,I-ALL1st,I-ALL5th,I-ALL10th,I-ALL20th,I-ALL25th,I-ALL50th,I-ALL70th,I-
ALL99th,I-Madmedian,I-Min,I-Skewness,I-Variance,I-P5th,I-P6th,I-P7th,I-P8th,I-P9th,I-P11th,I-
P12th,I-P13th,I-P14th,I-P16th, I-P17th,I-P18th,I-PIQ, TreeHeight,C-diameter,C-area,C-
Volume,H,SlopeL,SOS,SOA,QFD

g,b,RBRI,RBAI,GBDL,MRBVI,RGBVI,EXGR,0-Mean,0-Var,0-Homo,0-Can,0-Dis,45-Mean,45-
Dis,45-Ent,45-ASM,45-Cor,90-Dis,90-Ent,90-ASM,135-Mean,135-Can,135-Dis, 135-Ent,135-
ASM,135-Cor,LALE-AAD,E-CRR,E-AIH1st,E-AIH10th,E-AIH20th, E-AIH25th,E-AIH30th,E-
ATIH40th,E-AIH50th, E-AIH60th, E-ATH70th, E-AIH75th, E-ATH80th, E-AIH90th,E-AIH95th, E-
DBF 97 AIH99th, E-AIHIQ,E-CMC,E-PIQ,E-Madmedian,E-Max,E-Mean,E-Median,E-P1st,E-P5th,E-
P10th,E-P20th,E-P25th,E-P30th,E-P40th,E-P50th,E-P60th,E-P70th,E-P75th,E-P80th,E-P90th,E-
P95th,E-P99th,E-SMS,E-Stddev,E-variance,D-M0,D-M2,D-M5,D-M6,I-ALL1st, I-ALL25th,I-
ALL60th,I-ALL80th,I-ALL90th,I-Max,I-Mean,I-Min,I-Skewness,I-P5th,I-P6th,I-P8th,I-P10th,I-
P11th,I-P13th,I-P15th, I-P16th,I-PIQ, TreeHeight,C-diameter,C-area,C-Volume, H,SOA

PY 101

When analyzing the characteristic PI index of the three tree species, the variables
related to point cloud height, canopy, and topographic features were generally more
important in estimating the biomass, while the visible light index of the image was relatively
lower. The PI importance scores of the point cloud height percentile, cumulative percentile,
and its height statistics, canopy volume, tree height, and ground elevation as individual
variables were significant. It was found that the density and intensity features of the point
clouds were more important for the CL than for the other two tree species and the image
texture was more important only for the DBE.

3.3. Range of Grid Search Parameters

In order to eliminate the influence of parameter settings on the comparison of the
biomass estimation with different characteristic combinations, Grid Search was used to
investigate the estimation performance of each model. The consistency of the experimental
parameter environment was maintained during the Grid Search. The search ranges of the
parameters were shown in Table 15.

Table 15. Search ranges of grid parameters of each model.

Model Name Parameters Range

Number of decision trees (n_estimators): [50,300], Sampling interval: 20
RF Maximum depth of the model (max_depth): [3,10], Sampling interval: 2
Maximum number of input features in a single tree (max_features): [2,20], Sampling interval: 2

Number of decision trees (n_estimators): [50,300], Sampling interval: 20
XGBoost Maximum depth of the model (max_depth): [3,10], Sampling interval: 2
Learning rate of gradient descent (learning_rate): [0.01,0.3], Sampling interval: 0.01
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3.4. Model Construction and Evaluation using Original Feature Combinations

In this section, the RF and XGBoost models for biomass estimation of the three domi-
nant tree species were constructed based on the different combinations of the features. The
accuracy evaluation results are shown in Tables 16 and 17. The results showed that XGBoost
had a stronger learning ability than the RF model, which resulted in a large difference
in the accuracy between the training set and the test set. There was a serious problem of
overfitting. The estimation results of different tree species indicated that the point cloud
structural features were more suitable for biomass estimation, compared with the image
features, because they achieved higher estimation accuracy and a better fitting effect. In
addition, the estimation accuracy of the model biomass could be significantly improved
by combining different types of features. The optimal or suboptimal test set accuracy was
obtained by combining all the features in these comparative experiments.

Table 16. Comparison of regression accuracy of RF model with different original feature combinations.

RMSE

. Max . Max . R2 of RMSE of R? of
Species Class Number Depth Estimators Features of ;Z:m Train Set Test Set  Test Set
Image 60 9 170 2 0.1157 0.8163 0.2061 0.1859
Point cloud 101 3 90 4 0.1150 0.8186 0.1315 0.6684
Image + Point 161 3 50 16 0.1127 0.8258 0.1334 0.6586
CL cloud
Image + Other 72 9 130 14 0.1008 0.8606 0.1850 0.3440
Point cloud + 113 9 110 6 0.0951 0.8760 0.1219 0.7152
Other
ALL 173 5 130 12 0.0999 0.8632 0.1209 0.7197
Image 60 9 50 2 0.0824 0.8679 0.2056 0.3479
Point cloud 101 5 90 18 0.0467 0.9576 0.1123 0.8055
Image + Point 161 9 50 14 0.0463 0.9583 0.1087 0.8176
PY ClOud
Image + Other 72 9 50 16 0.0643 0.9194 0.1748 0.5285
Point cloud + 113 7 50 6 0.0463 0.9582 0.1119 0.8068
Other
ALL 173 9 50 18 0.0347 0.9766 0.1035 0.8347
Image 60 5 50 12 0.0660 0.8803 0.1158 0.5622
Point cloud 101 9 90 12 0.0501 0.9309 0.1107 0.5996
Image + Point 161 5 50 8 0.0635 0.8890 0.1049 0.6406
DBF Cloud
Image + Other 72 5 50 16 0.0645 0.8855 0.1034 0.6508
Point cloud + 113 9 50 12 0.0574 0.9092 0.1146 0.5706
Other
ALL 173 9 110 16 0.0542 0.9193 0.1045 0.6429
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Table 17. Comparison of regression accuracy of XGBoost model with different original feature

combinations.
Species Class Number Max Estimators Max OI;l}/Ireslfn R? of RMSE of R? of
P Depth Features Set Train Set Test Set  Test Set
Image 60 7 50 0.55 0.0003 1.0000 03062  —0.7972

Point cloud 101 3 210 0.03 0.1183 0.8081 0.1429 0.6084
Image + Point 161 7 50 0.43 0.0003 1.0000 0.2030 0.2102

CL cloud
Image + Other 72 3 50 0.53 0.0003 1.0000 0.1943 0.2766
Point cloud + 113 3 50 0.13 0.1018 0.8580 0.1330 0.6611

Other
ALL 173 3 110 0.16 0.0021 0.9999 0.1175 0.5489
Image 60 3 50 0.47 0.0003 1.0000 0.2268 0.2070
Point cloud 101 3 50 0.57 0.0003 1.0000 0.2154 0.2845
Image + Point 161 3 90 0.21 0.0004 1.0000 0.1985 0.3923

PY cloud
Image + Other 72 3 50 0.69 0.0002 1.0000 0.1320 0.7314
Point cloud + 113 5 70 0.43 0.0002 1.0000 0.1982 0.3943

Other
ALL 173 5 70 0.43 0.0003 1.0000 0.1765 0.5195
Image 60 5 90 0.25 0.0003 1.0000 0.1191 0.5363
Point cloud 101 7 50 0.69 0.0002 1.0000 0.1150 0.5680
Image + Point 161 7 70 0.35 0.0002 1.0000 0.1115 0.5936

DBF cloud
Image + Other 72 5 50 0.47 0.0003 1.0000 0.1122 0.5888
Point cloud + 113 9 50 0.45 0.0002 1.0000 0.1091 0.6108

Other
ALL 173 3 50 0.47 0.0002 1.0000 0.1103 0.6025

3.5. Model Construction and Evaluation Using Filtered Features

Due to the multicollinearity, weak correlation, and low contribution of the features,
the experiment in this section evaluated the effect of the feature selection methods on
the accuracy of biomass regression by comparing three feature selection methods: mul-
ticollinearity analysis, variable correlation filtrating, and permutation importance index.
The results are shown in Tables 18 and 19. After the multicollinearity analysis (MA), the
test accuracy of the model is significantly reduced compared to all the features trained in
the previous section. The overfitting problem of the XGBoost model is still serious. The
multicollinearity analysis did not improve the accuracy of the RF and XGBoost models.
The test accuracy of the PI feature importance screening method was better than that of the
correlation coefficient method and the RF model combined with the PI filtering method
achieved the best test set accuracy in the three species.
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Table 18. Comparison of regression accuracy of RF with different feature selecting methods.
. Max . Max RMSE of R? of RMSE of R? of
Species Method Number Depth Estimators Features  Train Set  Train Set Test Set Test Set
CL 56 3 50 4 0.1005 0.8614 0.1248 0.7013
PY MA 59 7 50 18 0.0492 0.9528 0.1605 0.6029
DBF 50 9 70 18 0.0565 0.9122 0.1023 0.6578
CL 70 7 150 8 0.0976 0.8695 0.1188 0.7296
PY CC 87 7 70 10 0.0518 0.9477 0.1058 0.8275
DBF 77 9 270 18 0.0515 0.9272 0.1162 0.5589
CL 53 3 70 4 0.1225 0.7942 0.1176 0.7346
PY PI 101 9 50 16 0.0385 0.9712 0.0960 0.8578
DBF 97 5 70 16 0.0584 0.9061 0.0986 0.6823
Table 19. Comparison of regression accuracy of XGBoost with different feature selecting methods.
. Max . Max RMSE of R? of RMSE of R? of
Species Method Number Depth Estimators Features  Train Set  Train Set Test Set Test Set

CL 56 3 90 0.07 0.1166 0.8137 0.1653 0.4763
PY MA 59 3 50 0.47 0.0003 1.0000 0.1532 0.6382
DBF 50 5 50 0.63 0.0002 1.0000 0.1112 0.5960
CL 70 7 50 0.13 0.1022 0.8567 0.1694 0.4496
PY CC 87 3 70 0.43 0.0003 1.0000 0.1677 0.5664
DBF 77 9 50 0.69 0.0002 1.0000 0.1018 0.6614
CL 53 3 70 0.39 0.0003 1.0000 0.1439 0.6032
PY PI 101 7 50 0.55 0.0003 1.0000 0.1319 0.7318
DBF 97 3 50 0.55 0.0002 1.0000 0.1193 0.5349

3.6. Mapping of Biomass in The Study Area

Based on the optimal test results of the experiment in Section 3.5, the PI method was
adopted to filter the retained feature dimension information and the trained model was
used to estimate the biomass of the study area. The obtained biomass classification and
grading diagram of the study area is shown in Figure 11 and the biomass statistical results
are shown in Table 20. The analysis results showed that the Deciduous Broad-leaved Forest
with the largest number of individual trees had the highest total biomass of 66,371.33 kg.
The total biomass of the arbor forest was 104,102.76 kg in the study area. In addition, the
Pinus yunnanensis had the most individuals with high biomasses and the highest average
biomass. Finally, the Cupressus lusitanica did not have individuals with high biomass and
the biomass of its individual trees was mostly distributed between 23 and 45 kg.
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Figure 11. Forest biomass distribution at single tree scale in the study area.
Table 20. Biomass statistics of trees in study area.
Species Cupressus Pinus Deciduous Total
P lusitanica yunnanensis Broad-Leaved Forest
Maximum (kg) 44.96 200.16 77.06 —
Minimum (kg) 15.87 14.58 9.29 —
Mean (kg) 31.96 73.85 37.73 —
Variance (kg) 5.98 37.09 18.20 —
Total (kg) 12,399.61 25,331.82 66,371.33 104,102.76

4. Discussion

In this study, the strong correlations and important characteristic variables of the
biomasses of different tree species in a subtropical plantation in Kunming, Yunnan province,
were analyzed using visible ortho images of UAV and airborne lidar point cloud data. Based
on random forest and XGBoost, different variable sets were used to construct estimation

models, respectively. This paper mainly focused on the following areas:

(1) There were significant differences in the correlation and important features among
different tree species. The point cloud height, canopy, and topographic features were
all of high importance in the three tree species and were basically consistent with
some previous research conclusions [26,27,40]. Among them, the point cloud height
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percentile, cumulative percentile, canopy volume, tree height, and ground elevation as
individual variables showed outstanding PI importance scores. The difference is that
the features of the point cloud density and intensity are only of particular importance
for the Cupressus lusitanica and the image texture features are only important for
Deciduous Broad-leaved Forest.

Besides, our study result showed that the combinations of different categories of

variables significantly improved the estimation accuracy and achieved better results than
single point cloud feature estimation. In particular, the combination of point clouds,
canopies, and topographic features greatly improved the biomass estimation accuracy of
Cupressus lusitanica and Pinus yunnanensis. The image features have a great influence on the
estimation precision of Deciduous Broad-leaved Forests, which further verified the conclusion
of the PI index analysis.

@)

®)

4)

©)

The estimation accuracy of RF and XGBoost models cannot be improved by eliminat-
ing the multicollinearity problem among variables. This feature-selection processing
method has shown to be beneficial in the biomass estimation of linear models in the
past [41,42]. However, for machine learning models that handle high-dimensional
data well, such as RF and XGBoost, the sampling of features and samples can be
adopted to avoid multicollinearity problems. At the same time, this processing will
greatly reduce the diversity of the decision trees, which can affect the estimation
accuracy. In addition, the estimation accuracy of the permutation importance index
method is better than that of the correlation analysis. This indicates the advantages of
wrapper methods such as PI in feature screening. Compared with the filter method, it
is more targeted and has a better effect on model improvement [43].

Image features such as the visible light vegetation index and texture had little influence
on the biomass estimation of arboreal forests. Except for the texture features of the
Deciduous Broad-leaved Forest, the image features were less correlated and important
to the biomasses of the three tree species. In the feature combination experiment,
the estimation accuracy was not improved much by combining the image features.
This is different from the previous biomass estimation studies on annual crops such
as maize, potato, and winter oilseed rape [19-21]. Because the spectral responses
of annual crops are different in different growth stages and are associated with the
accumulation process of crop biomass. The relatively accurate biomass estimation can
be obtained through spectral information. Obviously, this theory is not applicable to
the biomass estimation of subtropical arbor forests, whose leaf spectral responses are
usually strongly correlated with seasons, but not with the growth cycle.

The differentiation between species is beneficial for forest biomass estimation. The best
estimation accuracy was achieved for all three tree species by using the combination
of the post-fusion features, permutation importance index, and random forest model.
The best estimation accuracy of the three tree species in the test sets are: Cupressus
lusitanica: (RMSE = 0.1176, R? = 0.7346), Pinus yunnanensis: (RMSE = 0.0960, R? =
0.8578), and Deciduous Broad-leaved Forest: (RMSE = 0.0986, R? = 0.6823). Among them,
the single species of Cupressus lusitanica and Pinus yunnanensis achieved significantly
higher estimation accuracy than the mixed species of Subtropical Deciduous Broad-leaved
Forest.

The biomass estimation model in this study has regional limitations. Since the true
values of the sample biomass were calculated by regional bivariate biomass equations,
such equations are often strictly limited to the application area and tree species.
Therefore, it is very important to change the acquisition method of the biomass truth
value for reference in future research.

5. Conclusions

In this paper, multi-source remote sensing features were extracted based on UAV or-

thophotos and airborne Lidar point clouds and the features were filtrated using correlation
analysis and a permutation importance index. The key features of the three dominant tree
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species are identified separately and the differences in their contributions to the estimation
model were discussed. In addition, the biomass mapping of the single tree-scale forest in
the study area was also completed through the fusion of image and point cloud features.
The main results are as follows:

(1) In this study, the visible light vegetation index, texture, point cloud height, density,
intensity, canopy, and topographic features were extracted. Among them, the point
cloud height features, canopy variates, and the topographic-related factors showed
great importance in the biomass estimation of the three species. In addition, the
characteristics of the point cloud density and intensity are only important for Cupressus
lusitanica. The image texture features are only important for the subtropical Deciduous
Broad-leaved Forest. The visible light index had little effect on the biomass estimation
of the three tree species.

(2) A total of 2490 individual trees were segmented in the study area, which included
388 strains of Cupressus lusitanica, 343 strains of Pinus yunnanensis, and 1759 strains
of Deciduous Broad-leaved Forest. The total biomass of the forest in the study area was
104,102.76 kg, including 12,399.61 kg of Cupressus lusitanica, 25,331.82 kg of Pinus
yunnanensis, and 66,371.33 kg of Deciduous Broad-leaved Forest. The mean biomass of
Pinus yunnanensis was the highest (73.85 kg) and its number of individuals with high
biomasses was the largest.

(3) From the estimation results of the two models, the random forest model with a poor
learning ability showed better generalization ability in biomass estimation exper-
iments with small samples and high dimensional data. Therefore, it is extremely
necessary to collect more sample data when an estimation model with stronger learn-
ing ability is needed to improve the estimation accuracy.
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