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Abstract: Unplanned readmission within 30 days is a major challenge both globally and in
South Africa. The aim of this study was to develop a machine learning model to predict
unplanned surgical and trauma readmission to a public hospital in South Africa from
unstructured text data. A retrospective cohort of records of patients was subjected to
random forest analysis, using natural language processing and sentiment analysis to deal
with data in free text in an electronic registry. Our findings were within the range of
global studies, with reported AUC values between 0.54 and 0.92. For trauma unplanned
readmissions, the discharge plan score was the most important predictor in the model, and
for surgical unplanned readmissions, the problem score was the most important predictor
in the model. The use of machine learning and natural language processing improved the
accuracy of predicting readmissions.
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1. Introduction

Unplanned readmission is a major challenge both globally and in South Africa and is
associated with increased health costs and poor outcomes for patients [1,2]. Monitoring
the rate of unplanned readmission and understanding the associated risk factors may help
institutions improve the quality of care and cost-effectiveness [3]. Identifying risk factors
for unplanned readmission may help develop targeted programs to identify patients at risk
and reduce the rate of unplanned readmission [4,5]. Although previous studies have used
retrospective regression analysis to predict unplanned readmission [6], the development of
an algorithm may help prospectively identify at risk patients.

The development of electronic registries over the last two decades has generated
large data sets that may be used to generate predictive algorithms [7]. These electronic
registries capture data in binary type entries, with distinct numerical values and free text
for fields such as patient history. Analyzing binary type entries and distinct numerical
values is relatively straightforward using modern spreadsheets and data analysis programs.
However, analyzing text entries is more difficult, as the inconsistent nomenclature used
to describe key variables are not easily extracted from text. A strategy to address this is
the use of artificial intelligence systems such as machine learning, which can allow for
the deep mining of large volumes of text and the identification of relationships between
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text and outcomes [6,7]. Specifically, the use of natural language processing (NLP) in
machine learning can be used to analyze free-text data and to convert text to a quantitative
format. This may identify correlations between text and outcomes. These factors may be
incorporated into predictive models [8].

There has been an increase in the use of machine learning in the health sector in
Africa, driven by the need for improved health service delivery [9]. In South Africa, a
major obstacle has been the lack of robust electronic health registries and integrated health
information systems, particularly within the public health sector, which is compounded by
the proposed National Health Insurance [10,11]. This limits the ability to collect, analyze,
and utilize health data effectively for informed decision-making, predictive analytics, and
the deployment of machine learning models. Therefore, a research gap remains around
the predominance of free-text data in such existing systems, rendering it opaque and
inaccessible for research purposes.

This project sought to leverage an Natural Language Process NLP machine learning
approach to interrogate the Hybrid Electronic Medical Registry (HEMR) database, including
free-text entries, with the primary objective of identifying key predictive factors associated
with unplanned surgical readmission. The aim was to develop an algorithm that can be
integrated into a risk classifier tool to identify patients at risk for unplanned readmission.

2. Materials and Methods
2.1. Setting

In Grey’s Hospital in Pietermaritzburg, South Africa, a tertiary public health hospital,
the Trauma and Surgical Department has maintained an electronic registry, the Hybrid
Electronic Medical Registry (HEMR), since 2012. For over a decade, the HEMR has been
integrated into the daily workflow of the electronic records of trauma and general surgery
patients. The HEMR consists of an electronic menu on which all patient details are entered.
This interface captures physiological data and demographic data as distinct fields. It also
captures free text documenting each patient’s presenting symptoms, history, clinical plan,
operation notes, and discharge summary. To date, the HEMR has accumulated over forty
thousand distinct electronic patient entries. These data have been captured with binary yes
or no type entries, and fields of free text. Electronic records of trauma and general surgery
patients between 2012 and 2022 were included in this study.

2.2. Data and Predictors

The outcome metric for this secondary data analysis of a retrospective cohort of patient
records were patients who were readmitted unexpectedly to the hospital within 30 days of
initial discharge, considered as unplanned readmission [2]. Trauma surgery data included
15,354 patient records from 2012 to 2022, of which 932 patients (6.1%) experienced unplanned
readmission. General surgery data included 21,994 patient records from 2012 to 2022, of
which 2271 patients (10.4%) experienced an unplanned readmission. Inclusion criteria
for this study were limited to individuals aged 18 years and older to focus on the adult
population. This exclusion criterion was applied to ensure findings are specifically relevant
to adult patients. After removing all patients aged less than 18 years and incomplete data
records, 699 trauma patients and 1492 general surgery patients experienced an unplanned
readmission and were included in this analysis.

To achieve statistical balance between patients who experienced unplanned readmis-
sion and those who did not (other admissions, i.e., patients admitted, planned readmissions,
and readmissions after 30 days), a case control design with a stratified random sampling
strategy was used. From the data set, ‘other admissions’ were selected (700 patients from the
trauma surgery data set and 1495 patients from the general surgery data set) along with the
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cases of unplanned readmissions. The controls did not experience unplanned readmission
and were the same average age as patients who experienced unplanned readmission.

Available variables included in the analysis were age, sex, diagnosis, diastolic blood
pressure, discharge plan, mean arterial pressure, presenting problem, pulse rate, respiratory
rate, surgery, systolic blood pressure, and temperature. Presentation and comorbid history,
diagnosis, discharge plan, problem, and surgery variables were captured in free text-formed
data. To convert qualitative free-text data to quantitative scores, sentiment analysis was
used to create a sentiment dictionary using NLP. NLP is a field within artificial intelligence
that enables computers to comprehend spoken and written human language [12]. NLP
is employed to uncover intricate semantic structures within textual data by leveraging
computational algorithms and encompasses aspects distinct from conventional text analysis
methods like counting keywords and conducting mapping analysis [13]. See Figure 1 for
the overall study flow.

Key Word Sentiment
Extraction + Analysis
l NLP Algorithm |

Sentiment
Score

Free-Text Data

Quantitative Random
Data Forest

Prediction

Figure 1. Study flow. The figure illustrates the study flow, highlighting key components using distinct
colors: Red represents the data. Blue represents data processing and analysis. Green represents the
prediction results. The flow demonstrates the application of Natural Language Processing (NLP) in
the study, showcasing the progression from raw data to final predictions.

2.3. Sentiment Analysis

Using NLP, sentiment analysis was performed to detect and extract subjective infor-
mation from text data in terms of keywords [12]. Using the R programming language,
version 4.0.3, and R packages dplyr [14], string [14], readr [14], and tidytext [15], a sentiment
dictionary was created based on the text field in the records of patients who had been read-
mitted within 30 days. The sentiment dictionary included health condition keywords and
their weighted scores, based on their textual frequency, from free-text variables. Keywords
were circulated to clinicians within the trauma and surgery department for validation and
refinement. Based on the final sentiment dictionary, diagnosis, discharge plan, problem,
and surgery texts were scored. These score variables were named the diagnosis score,
discharge plan score, problem score, and surgery score. These scored variables were then
used as quantitative predictors.

2.4. Statistical Analysis

The random forest estimation method was used to predict the risk of patients expe-
riencing an unplanned readmission. Random forest is a machine learning algorithm that
combines multiple decision trees to produce a more accurate prediction. The algorithm
was implemented using the R programming language, version 4.0.3, and the R package
randomPForest [16]. Data sets were divided into training and testing sets and a 70:30 split
was used, with 70% of data used for training and 30% for testing [17] (Table 1). The training
set was used to develop the random forest model, while the testing set was used to evaluate
the performance of the model.
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Table 1. Data and training data sets.

Area Train Test
Unplanned Other Unplanned Other
Readmission Admissions Readmission Admissions
Trauma Surgery 506 485 193 215
General Surgery 1055 1060 437 435

A random forest model was used to predict unplanned readmission for each patient in
the testing set. The predicted readmission rate was compared to the actual readmission rate
to evaluate the accuracy of the model using the following performance metrics to assess the
model’s performance: sensitivity, specificity, positive predictive value, negative predictive
value, and area under the receiver operating characteristic curve. In addition, to include
predictors with highest importance in the model, mean decrease accuracy values were
calculated. Mean decrease accuracy is calculated to monitor the impact of each predictor
on the accuracy of a random forest model and is a feature of importance measure used
in random forest models to assess the impact of each predictor variable on the model’s
accuracy. This measure reflects the decrease in model accuracy when a particular variable
is randomly permuted while all others are left unchanged. Mean decrease accuracy is
computed by comparing the out-of-bag (OOB) error rate of the original model to the OOB
error rate after permuting each predictor variable. Variables that result in larger decreases
in accuracy when permuted are considered more important. A mean decrease accuracy
plot ranks variables based on their importance to a random forest model, with higher
values indicating greater importance. This method provides insight into how each variable
contributes to a model’s overall predictive performance, considering both the variable’s
individual effect and its interactions with other variables in the model.

2.5. Ethical Considerations

This study received ethics approval from the university ethics committees (HS22/4/6;
UM IRB Review Number 351071) and the KwaZulu-Natal Department of Health
(BCA 221/13). All patient data were deidentified to ensure confidentiality and privacy.

3. Results
3.1. Trauma Surgery Analysis

For the trauma surgery model, the final random forest model was built using
12 predictors, including the diagnosis score, the discharge plan score, mean arterial pres-
sure, the problem score, the surgery score, systolic blood pressure, temperature, diastolic
blood pressure, sex, pulse, respiratory rate, and age (Figure 2a). Predictors converted from
free-text data, except the surgery score, were the most important predictors in the model.
Additionally, they were the most important predictors in the model to classify patients in
other admissions and unplanned readmissions (Figure 2a).

3.1.1. Accuracy (Trauma Data)

The random forest model achieved an accuracy of 61.52% (95% CI [56.61%, 66.26%])
with an Area under the Curve (AUC) = 0.631 (Figure 3a). The model’s performance
was characterized by balanced sensitivity (65.12%) and specificity (57.51%). The positive
predictive value was 63.06%, meaning that when the model predicted an unplanned
readmission, it was correct 63.06% of the time. The negative predictive value was 59.68%,
suggesting that when the model predicted no unplanned readmission, it was correct 59.68%
of the time. The model identified 140 patients correctly as other admission patients, while
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111 patients were correctly identified as unplanned readmission patients. On the other
hand, 82 patients were incorrectly identified as unplanned readmission patients, and
75 patients were incorrectly identified as other admission patients. The model thus had
moderate success in identifying both patients who would and would not have had an
unplanned readmission, with slightly better performance in identifying those who would
not have had an unplanned readmission.
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Figure 2. Predictors for unplanned readmissions (URs) and other (OTR) admissions for trauma (a)
and (b) general surgery. OTR = other admissions; UR = unplanned readmissions.
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Figure 3. Area under the curves (ROC curves) for trauma (a) and surgery readmissions (b) prediction.

3.1.2. Key Predictors (Trauma Data)

The discharge plan score was the most important predictor in the model, followed
by the problem score, the diagnosis score, and diastolic blood pressure. The discharge
plan score emerged as the most crucial predictor, showing substantially higher importance
for other admissions and unplanned readmissions compared to other variables. The
problem score and the diagnosis score followed as the second and third most important
predictors, respectively. Both demonstrated greater importance for other admissions than
for unplanned readmissions, indicating they may have been more influential in predicting
when a patient was less likely to require unplanned readmission.
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3.2. Surgery Analysis

For general surgery, a random forest model was built using 12 predictors, including the
diagnosis score, the discharge plan score, diastolic blood pressure, mean arterial pressure
(MAP), the problem score, sex, the surgery score, systolic blood pressure, pulse rate,
respiratory rate, temperature, and age (Figure 2b). Additionally, the most important
predictors in the model to categorize patients for both other admission and unplanned
readmissions were identified (Figure 2b).

3.2.1. Accuracy (Surgery Data)

The random forest model achieved an accuracy of 56.31% (95% CI [52.94%, 59.63%]),
with an AUC = 0.5632 (Figure 3b). The model’s performance was characterized by balanced
sensitivity (60.00%) and specificity (52.63%). The confusion matrix revealed that out of
872 total patients, 261 patients were correctly identified non-unplanned readmission pa-
tients and 230 patients were correctly identified unplanned readmission patients, while
207 patients were incorrectly identified as unplanned readmission patients and 174 patients
were incorrectly identified as other admission patients. This indicates that the model had
moderate success in identifying both patients who would and would not have had an
unplanned readmission, with slightly better performance in identifying those who would
have had an unplanned readmission. The positive predictive value was 55.77%, meaning
that when the model predicted an unplanned readmission, it was correct 55.77% of the
time. The negative predictive value was 56.93%, suggesting that when the model predicted
other admission, it was correct 56.93% of the time.

3.2.2. Key Predictors (Surgery Data)

The problem score was the most important predictor in the model, followed by the
discharge plan score, the surgery score, and diastolic and systolic blood pressure for surgery
unplanned readmissions. The problem score showed substantially higher importance for
both non-unplanned and unplanned readmissions compared to other variables. The
discharge plan score and the surgery score followed as the second and third most important
predictors, respectively. Both demonstrated greater importance for other admissions than
for unplanned readmissions, indicating they may be more influential in predicting when
a patient is less likely to require unplanned readmission. Physiological measures such as
diastolic blood pressure, systolic blood pressure, and the diagnosis score showed moderate
importance, with varying patterns between the different types of admissions.

Demographic factors like sex, MAP, and respiratory rate appeared less influential
overall, suggesting that clinical indicators may be more predictive of readmission status
than basic patient characteristics in this model. Variables such as age, pulse, and tempera-
ture showed notable differences in importance between other admissions and unplanned
readmission predictions, potentially indicating specific factors that distinguish between
these two outcomes.

4. Discussion

Standard statistical analysis such as regression and survival analysis have traditionally
been the most widely used techniques for model building, and a recent review suggests
that machine learning techniques can improve prediction ability over traditional statistical
approaches [18]. Previous studies have indicated that the balanced random forest model
outperforms the competition, with a reported sensitivity of 70% and an AUC value of
0.78 for machine learning forecasting of hospital readmissions [19] and all-cause mortality
using South African data (AUC = 0.82) [20]. It is important to note that these studies did
not utilize unstructured text data as a predictor for hospital readmission. Our project
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aimed to leverage a natural language processing (NLP) machine learning approach to ana-
lyze the HEMR database, including free-text entries. This innovative use of unstructured
text data may explain the differences in AUC values observed in our study compared
to those reported in other studies. Despite the lower AUC values, our findings under-
score the potential of incorporating NLP techniques to enhance predictive modeling in
healthcare settings.

Using data captured in real time in electronic health records, we developed and vali-
dated a machine learning model to predict the likelihood that patients will have unplanned
readmissions within 30 days. Our findings were within the ranges of global studies, with
reported AUC values between 0.54 and 0.92 [18,21].

For trauma unplanned readmissions, the discharge plan score was the most important
predictor in the model, followed by the problem score, the diagnosis score, and diastolic
blood pressure. Patients whose discharge EHRs included keywords (e.g., neurosurgery,
trauma, and ICU) selected by clinicians had a higher chance of being readmitted to the
hospital compared to those whose discharge EHRs did not include these keywords.

For surgery unplanned readmissions, the problem score was the most important
predictor in the model, followed by the discharge plan score, the surgery score, and diastolic
and systolic blood pressure. Patients whose problem EHRs included keywords (e.g., sepsis,
tumor, and acute) selected by clinicians had a higher chance of being readmitted to the
hospital compared to those whose discharge EHRs did not include these keywords.

This is similar to other studies that identified length of stay, disease severity index,
being discharged to a hospital, and primary language other than English with increased
risk of being readmitted within 30 days [22]. This model provides a focus on data normally
captured in free text and adds to the normal predictive values for trauma and surgery
readmissions, such as age and comorbidity [23].

5. Conclusions

Our research demonstrates a novel approach of harnessing NLP machine learning
techniques to extract valuable insights from free-text entries contained within the HEMR.
This methodology enhanced the prediction of our model, thereby highlighting the potential
for further advancements in healthcare prediction models. The model has moderate overall
accuracy, indicating room for improvement, with limitations being that risk scores were
developed using patient data from a single institution. The generalizability of our findings
will need further validation.
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