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Abstract: The Tijuana River watershed is binational, flowing from Tijuana, Mexico into San Diego
and Imperial Beach, USA. Aging sewage and stormwater infrastructure in Tijuana has not kept pace
with population growth, causing overflows into this watershed during major rainfall or equipment
failures. The public health consequences of this impaired watershed on the surrounding communities
remain unknown. Here, we performed untargeted metagenomic sequencing to better characterize
the sewage contamination in the Tijuana River, identifying potential pathogens and molecular
indicators of antibiotic resistance in surface waters. In 2019-2020, water samples were collected within
48 h of major rainfall events at five transborder flow sites and at the mouth of the river in the US
portion of the Tijuana River and estuary. After filtration, DNA was extracted and sequenced, and
sequences were run through the Kaiju taxonomic classification program. A pathogen profile of the
most abundant disease-causing microbes and viruses present in each of the samples was constructed,
and specific markers of fecal contamination were identified and linked to each site. Results from
diversity analysis between the sites showed clear distinction as well as similarities between sites and
dates, and antibiotic-resistant genes were found at each site. This serves as a baseline characterization
of microbial exposures to these local communities.

Keywords: untargeted metagenomics; water, sanitation and hygiene (WaSH); Tijuana River and Estuary;
impaired water bodies; stormwater flows; transborder water

1. Introduction

Water, sanitation and hygiene (WaSH) is a global public health issue, stemming from
substantial sources of municipal and industrial pollution and sewage contamination that
have negatively impacted the health and overall quality of life of countless people. Nearly
2 billion people globally lack access to improved sanitation, resulting in an increased risk
for communicable diseases [1,2]. Though over 97% of people in the United States have
access to safe drinking water and sanitation infrastructure, only 43% of people in Mexico
have these necessities [3]. This lack of safe drinking water especially affects developing
countries, where diarrhea-related deaths in children younger than 5 years old are more
common, with 1.7 billion cases of diarrhea being reported in this age group globally, and
9% of this age group’s 5.8 million deaths being attributed to this condition [4]. Additionally,
cholera and typhoid fever are associated with a lack of clean drinking water, which count
for an estimated 224,000 deaths globally [5,6]. In the U.S., according to a recent EPA report,
more than half of the country’s water sources have a significant amount of pollution, with
about 2.44% of community water systems and about 6% of Clean Water Act permittees not
complying with the set standards of water quality [7,8]. Thus, there is a need for reliable
methods for identifying and quantifying disease-causing microbes and viruses in highly
contaminated waters.

The Tijuana River is an impaired water body located at the United States and Mexico
border. This 1750 square mile watershed crosses the U.S. border, with most of its area
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located in Mexico [9]. Flowing south to north, it drains into the Tijuana River Estuary
which then deposits into the Pacific Ocean. Following rapid urbanization in Tijuana and
insufficient upgrades to infrastructure, the water quality of the Tijuana River has been
degrading for decades. This degradation leads to sewage pollution in both the United
States and Mexico which may pose a public health risk to those living along the border [10].
The lower six miles of the Tijuana River and the Tijuana River Estuary which are jointly
called the Tijuana River Valley are classified as impaired water bodies according to the U.S.
Clean Water Act due to unacceptable quantities of heavy metals, bacteria, sediment, and
trash existing in the water [10].

Measures by both countries to treat the water at the border have been inadequate, with
beach closures becoming increasingly common and water quality frequently failing to meet
standards [11]. The Comision Estatal de Servicios Publicos de Tijuana (CESPT) manages the
operations of several water treatment facilities in Tijuana and at the international border in
San Diego County, but costly upgrades have been outpaced by rapid urbanization. Though
the majority (estimated at 80-85%) of Tijuana households have proper sewer connections,
this means that several hundred thousand dwellings may not be properly connected to the
grid, generating sewage and waste that may be carried into the Tijuana River watershed
through surface and groundwater contamination.

The U.S. border communities of San Ysidro (the southernmost part of the City of San
Diego) and Imperial Beach are located directly adjacent to the U.S.—Mexico border and
within the boundaries of the Tijuana River. These are both characterized as socioeconomi-
cally disadvantaged communities, and overall have an elevated risk of chronic diseases
compared to surrounding cities in San Diego county [12]. One potential factor of this
increased risk of disease is the contamination present in the water of the Tijuana River, and
numerous programs are underdevelopment or underway to improve water and air quality
at the U.S.—Mexico border. However, these current environmental health challenges, such
as microbial and chemical loading into these coastal waters, are persistent, and may have
lasting effects that are difficult to mitigate.

Identifying the disease-causing microbes and viruses present in the water will allow
us to better understand the effects that sewage contamination has on public health and aid
in the creation of a targeted solution. Current methods used to identify disease-causing
microbes and viruses in environmental water samples based on PCR and culturing tend to
be too narrowly focused, only assessing a specific species or genus of bacteria. Furthermore,
while new approaches to detect fecal contamination, such as the utilization of HF183 and
crAssphage primers that target human fecal-associated bacteria and phages, have presented
more options for detecting incidences and levels of fecal contamination, identification of
specific potential pathogens still needs to be completed separately from the detection of
sewage contamination. These methods also do not provide information about antibiotic
resistance, which can influence pathogenesis and persistence. Due to these limitations,
there are many disease-causing microbes and viruses that go undetected, posing a serious
health risk to affected communities.

Here, we apply an untargeted metagenomic approach to detect sewage contamination
and simultaneously identify and verify the presence of disease-causing microbes, viruses,
and antibiotic resistance genes in samples collected from the U.S. portion of Tijuana River
and Estuary. By using metagenomic sequencing to determine both microbial and viral
diversity across multiple sites along the Tijuana River, we were able to identify multiple
independent indicators to monitor fecal contamination levels. In addition, we applied a
novel bioinformatics approach that calculated the breadth-of-coverage (BOC) to selected
reference genomes to verify rapid metagenomic identification. Together, these approaches
have exciting future applications for rapidly monitoring water systems and could be used
to help address the challenges of water contamination, not just for the communities near
the Tijuana River, but for those impacted across the globe.
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2. Materials and Methods
2.1. Sample Collection, E. coli and Coliform Measurements

Twenty-two water samples were taken from six sites on 22 November 2019, 6 December
2019, 12 February 2020, and 24 February 2020. Figure 1 identifies the locations of the T]J
River Concrete Channel, Stewart’s Drain, Smuggler’s Gulch, Boca Rio, Goat Canyon, and
Yogurt Canyon sites. Coordinates are provided in Table S1 and assigned sample numbers
are provided in Table S2. All sites, except Boca Rio, are located at the U.S.-Mexico border
and receive transboundary stormwater flows. Boca Rio is an estuarine site with tidal flows
at the mouth of the Tijuana River as it enters the Pacific Ocean. The TJ River Concrete
Channel, Stewart’s Drain, and Smuggler’s Gulch sites are concrete-lined basins or channels,
and the Goat Canyon and Yogurt Canyon sites are natural basins. Samples were collected
>24 h post rainfall, which maximized stormwater input while minimizing safety risk due to
flooding. For two dates, samples could not be collected at the Goat Canyon site due to low
water depth at the time of sampling. Grab samples were collected from each site in sterile
Whirl-Pak® bags, transported to the lab in coolers with ice packs, and immediately filtered
through 0.22 um Sterivex® filters until clogging prevented filtration. Filtration volumes are
provided in Table S2.
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Figure 1. Location of sampling sites, November 2019-February 2020.
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2.2. DNA Extraction, Purification, and Sequencing

DNA was extracted and purified from the samples using the Qiagen DNeasy® PowerWater®
Sterivex® kit according to the manufacturer’s instructions. Concentration and purity of
the extracted DNA was then measured using a NanoDrop® Spectrophotometer. Library
preparation was completed using the Nextera XT DNA Library Preparation Kit. DNA
sequencing was completed by the Microbial Genome Sequencing Center (MiGS) at an
approximate read depth of 25 M using the NextSeq 200 platform, which returned sequence
files with forward and reverse reads.

2.3. Processing and Taxonomic Classification

The sequences were quality controlled using fastp, an “ultra-fast all-in-one FASTQ
preprocessing” program [13]. Filtering was based on length, number of unknown bases,
and a Phred quality score (Q) cutoff of 15 to exclude any bases with a base call accuracy
lower than 96.8%. Throughout the experiment, the program GNU Parallel was used to
execute commands simultaneously, taking advantage of multi-threading [14]. Kaiju, a
metagenomic taxonomic classification program [15], was used to identify matches to the
NCBI BLAST non-redundant protein database (nr_euk). To align the samples to the protein
database of nr_euk, which includes Bacteria, Eukaryotes, Archaea, and Viruses, Kaiju
translated each DNA sequence to a protein sequence before finding matches of a minimum
length of 11 and a minimum match score of 65, allowing for 3 mismatches, and counting
alignment hits. The output from Kaiju was then converted into a readable table using the
included kaiju2table program, listing the domain, kingdom, phylum, class, order, family,
genus, and species of each positive hit.

2.4. OTU Table Creation and Modification

The output files of the kaiju2table program were combined and converted into a single
metagenomic Operational Taxonomic Unit (OTU) table using a Python script, listing the
number of hits for each OTU and organizing the data by sample [16]. The taxonomic ranks
from domain to genus were removed and hits that did not have a species-specific match
were renamed accordingly as either unclassified, where the reads were not matched at all,
or could not be assigned to a (non-viral) species, where the hit was assigned to a taxonomic
level above species.

2.5. Disease-Causing Microbe and Virus Identification

Consulting the 2015-2019 County of San Diego Health and Human Services Agency’s
Reportable Diseases and Conditions by Year [17], a manual search was conducted of
disease-causing Bacteria, Eukaryotes, and Viruses present in the Kaiju results. The number
of hits for each species that matched San Diego County’s list was counted then averaged
across the samples.

2.6. Breadth of Coverage

Reference genomes for Arcobacter cryaerophilus, Escherichia coli, Human immunodefi-
ciency virus 1, and seven different Salmonella enterica sub-species were obtained from NCBI
Assembly. Indices for the reference genomes were built using bowtie2-build [18]. The
sequence reads were then mapped to the reference genomes using bowtie2 [19,20], creating
.sam files. The .sam files were then converted to .bam files and were sorted and indexed.
Following the concept laid out by Matthias Scholz in “SAMtools: get breadth of coverage”,
the percent BOC was then calculated by dividing the number of bases covered per sample
per reference genome by the total length of the reference genome.

2.7. Diversity Analyses

The modified metagenomic OTU table without viral species and a mapping file with
sample metadata were loaded into R to perform diversity analysis. The tables underwent
zero replacement using the zCompositions package [21], converting all zero values to
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pseudo-counts with Bayesian-multiplicative replacement. The centered-log ratio (clr) was
then used to transform the data, comparing the abundance of each species to the geometric
mean of the sample [22,23]. Non-metric multidimensional scaling (NMDS) was used with
a Euclidean distance matrix to calculate and map similarities and differences between
samples on a two-dimensional plane. Several beta-diversity analyses were then com-
pleted including analysis of variance, multivariate homogeneity of group dispersions, and
Tukey’s test [24,25].

To assess alpha diversity, the modified metagenomic OTU table generated from Kaiju
was also imported into QIIME 2 as a feature table and converted into a .gza file for further
analysis [26]. Using QIIME 2, several forms of alpha diversity metrics were performed, in-
cluding a quantification of the number of observed features and the calculation of Shannon
Entropy and Pielou Evenness. These metrics were then output and merged into one .tsv
file, and the corresponding metadata were added. This alpha diversity metric file was then
imported into R to generate plots for the relevant alpha diversity statistics.

2.8. Fecal Contamination Analysis

A list of bacteria commonly associated with the fecal contamination PCR primer HF183,
based on ] P Nshimyimana et al. [27], was compiled from the Kaiju results OTU table. These
bacteria included Bacteroides vulgatus, Bacteroides uniformis, Bacteroides fragilis, Bacteroides
stercoris, Bacteroides dorei, Prevotella ruminicola, Bacteroides stercoris CAG:120, Bacteroides
intestinalis CAG:315, Bacteroides uniformis CAG:3, Bacteroides intestinalis CAG:564, Bacteroides
fragilis CAG:558, Bacteroides vulgatus CAG:6, Bacteroides dorei CAG:222, and Bacteroides
fragilis CAG:47. Another list with common human-associated crAssphages was also created
to isolate the common human fecal inhabiting phage from the metagenomic data [28-32],
curated from the NCBI Taxonomy database [33]. These include uncultured crAssphage,
crAssphage LMMB, crAssphage sp. C0521BD4, crAssphage cr7_1, crAssphage cr85_1, and
crAssphage cr8_1. The sums of the HF183 bacteria and the crAssphages were appended to
the data, replacing the individual species counts before undergoing clr transformation. The
HF183 and crAssphage data were isolated from the transformed OTU table and underwent
several forms of statistical analysis for correlation including analysis of variance (ANOVA),
Spearman correlation, Kendall correlation, Pearson correlation, and regression analysis.

Total coliform and E. coli measurements were performed using the IDEXX Colilert
test. Samples were diluted based upon historical records of coliform and E. coli concentra-
tions in the Tijuana River, typically by 10,000-1,000,000X. Most probable numbers (MPNs)
were calculated following manufacturer instructions. Total coliform and E. coli MPNs are
provided by site and date in Table S3. No correlations were noted with precipitation or
transboundary flow gauge readings (R? < 0.3) [34].

2.9. Antibiotic Resistance Genes (ARGs)

Raw sequencing reads from each site were converted from .fastq format into .fasta
with the program seqtk [35]. Two groups of antibiotic resistance genes (ARGs), antibiotic
inactivation and antibiotic efflux, were then downloaded from the Comprehensive An-
tibiotic Resistance Database (CARD) [36] using the qualifiers part_of, is_a, participates_in,
has_part, and nucleotide. A BLAST database was then created for each antibiotic resistance
group. Using blastn [37] with 100% identity and 100% query coverage filters, the raw reads
were aligned to the database. The blastn results were then organized into a table with
information on the alignment length, mismatches, gaps, start and stop locations of the
query and subject, and e-value. The number of matches to a specific antibiotic resistance
gene for each sample was calculated and combined into a separate table, similar to an OTU
table. The relative abundance of each gene for each sample was calculated by dividing
by the number of reads in each sample’s sequencing files. This ARG table was imported
into R and the five most common genes by average relative abundance were graphed
and comparisons by site were calculated using Dunn’s test [38]. The sum of the relative
abundances for each site was also graphed and p-Values were calculated using Dunn’s test.
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2.10. Scripts and Data

All scripts that were used for the experiments can be found at https://github.com/
nickallsing /T]_River_Project (accessed on 1 November 2022) as well as sample input
and output data from this experiment. Scripts for the assessment of antibiotic resistance
gene markers can be found at https:/ /github.com /nickallsing /Find_ARG (accessed on
1 November 2022). The sequences that were used can be found under the project accession
number PRJEB57859.

3. Results
3.1. DNA Concentration and Sequence Quality

The DNA and sequences were at a normal concentration and were high-quality reads.
Results from the NanoDrop showed a range of 3.4 to 11.7 ng/uL for all samples. After
performing quality control on the sequences, an average of 99.24% of the reads passed the
set filters checking for quality, read length, and missing bases. An average GC content of
47.59% and 47.54% were reported before and after filtering, respectively. The fastp quality
control program also reported an average duplication rate of 19.86% across samples.

3.2. Metagenomic Results with Disease-Causing Microbes and Viruses

Metagenomic analysis revealed the most common hits present in the samples, the ten
highest averages of which are shown in Table 1. The most common species, on average,
in all 22 samples was the bacteria Arcobacter cryaerophilus, with 140,491.1 average hits.
A. cryaerophilus is a diarrheal pathogen of emerging interest, and thus is not commonly
surveilled by health systems. The names of several disease-causing bacteria, eukaryotes,
and even some viruses listed in the San Diego County Reportable Diseases and Condi-
tions by Year: 2015-2019 were found in the Kaiju metagenomic OTU table. Table 2 lists
the 11 most common disease-causing bacteria, eukaryotes, and viruses found as well as
each species’ average number of hits across all 22 samples. Salmonella enterica, Vibrio para-
haemolyticus, and Streptococcus pneumoniae were the three most common bacteria, with
1890.4, 1602.4, and 1009.0 average hits, respectively. The most commonly identified eukary-
ote was the parasite Trichomonas vaginalis, and HIV-1 was the most common disease-causing
virus, with 14.2 hits on average.

Table 1. List of top metagenomic results.

Species Average Number of Hits *
Arcobacter cryaerophilus 140,491.1
Pseudoarcobacter acticola 98,044.3
Simplicispira metamorpha 76,102.6

Bacteroides graminisolvens 59,197.3
Tolumonas auensis 57,818.1
Arcobacter suis 50,397.2
Acinetobacter johnsonii 39,478.1
Aeromonas media 36,381.4
Arcobacter butzleri 32,238.7
Rheinheimera sp. LHK132 32,046.6

* Average number of matches across all 22 metagenome libraries.
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Table 2. List of Disease-Causing Bacteria, Eukaryotes, and Viruses.

Bacterial Species Average Hits * Eukaryotic Species Average Hits
Salmonella enterica 1890.4 Trichomonas vaginalis 97.8
Vibrio parahaemolyticus 1602.4 Plasmodium ovale 36.2
Streptococcus pneumoniae 1009.0 Plasmodium vivax 29.1
Vibrio alginolyticus 462.8 Cyclospora cayetanensis 25.2
Bordetella pertussis 459.6 Plasmodium falciparum 23.8
Francisella tularensis 360.3 Plasmodium yoelii 21.7
Vibrio vulnificus 340.5 Entamoeba histolytica 18.4

Neisseria meningitidis 312.0 Viruses Average Hits
Yersinia enterocolitica 273.5 HIV-1 14.2
Mycobacterium tuberculosis 268.0 Hepatitis C 6.1
Listeria monocytogenes 101.0 Hepatitis B 3.7

* Average number of matches across all 22 metagenome libraries.

3.3. Breadth of Coverage

The samples from the transborder Stewart’s Drain site at each sampling date were cho-
sen to test the BOC verification method due to their high relative abundance of Salmonella
enterica, Escherichia coli, Arcobacter cryaerophilus, and HIV-1. Table 3 shows the results
of the percent BOC for these genomes across the samples collected at Stewart’s Drain
(Samples 1, 8, 14, and 20), which had the highest E. coli and total coliform concentrations
(Table S3). This site was selected because of its close proximity to the international wastew-
ater treatment plant and pump station, which had failed several times during the study
period corresponding with transborder spills (including 11/18/19) and was hypothesized
to contribute to higher levels of fecal indicator bacteria in Stewart’s Drain. HIV-1 BOC
was approximately 0%, suggesting that the detection of HIV-1 in these samples could be
a false positive. This demonstrates the importance of BOC analysis in the validation of
metagenomic sequencing.

Table 3. Percent Breadth of Coverage on Stewart’s Drain Samples.

Species Sample 1 Sample 8 Sample 14 Sample 20
2/12/20 11/22/19 12/6/19 2/24/20
S. enterica 45157 2.12% 9.77% 6.21% 3.48%
S. enterica DA34827 2.62% 10.09% 6.77% 3.31%
S. enterica FDAARGOS 94 2.50% 10.14% 6.71% 3.72%
S. enterica FDAARGOS 878 2.47% 10.00% 6.59% 3.63%
S. enterica LT2 2.48% 10.01% 6.63% 3.66%
S. enterica SA20021456 1.85% 8.06% 5.27% 2.88%
S. enterica SA20100201 1.97% 8.79% 5.68% 3.15%
Escherichia coli 11.87% 78.56% 55.51% 26.03%
Arcobacter cryaerophilus 91.27% 79.60% 94.81% 94.20%

HIV-1 0% 0% 0% 0%

3.4. Diversity Analysis

After transforming the data using the centered-log ratio and performing NMDS,
the coordinates displayed a pattern in which the Yogurt Canyon samples were clearly
distinct from the other sites, but also from other Yogurt Canyon samples. Yogurt Canyon
samples 2, 11, and 22 were each at a far end of the plot, away from the group and away
from each other, as shown in Figure 2. The most closely grouped site was Boca Rio, with
Samples 10, 16, and 21 very close and Sample 5 also not clearly separated. Permutational
analysis of variance (PERMANOVA) between dates showed no statistical significance
(p = 0.4275), while variance between sites was significant (p = 0.0016). Graphed values
using Tukey’s test for significant differences showed the distance to centroid between sites
and dates, with a similar trend from ANOVA, with sites having a greater variance than
dates (Figure S1).
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3.5. Alpha Diversity

Significant differences in alpha diversity were observed in the number of features,
evenness, and Shannon index between sites along the Tijuana River (Figure 3). The number
of observed features was significantly higher at the Yogurt Canyon site compared to Goat
Canyon and Smuggler’s Gulch with a Dunn’s test p-value of 0.0454 and 0.0337, respectively.
Evenness metrics showed significant differences between Boca Rio and the Goat Canyon,
Smuggler’s Gulch, and Stewart’s Drain sites with respective p-values of 0.0113, 0.0385, and
0.044. Yogurt Canyon also varied in this metric from the Goat Canyon site with a p-values
of 0.0234. Lastly, Shannon Indexing revealed the same relationships between the sites that
were present in the Evenness results.

Metagenomic NMDS

200 + 2 | date
® 1122 19
A 12619
A — —
m 2 H 21220
100 +
—+ 224 20
. 17
N 4
n A
% m site
N 83 L
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10 13 19 8
@ Goat_Canyon
¢ t ® Smugglers_Guich
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@ TJ_River_Concrete_Channel
1
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9
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NMDS1

Figure 2. Metagenomic Non-Metric Multidimensional Scaling Plot.
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3.6. Fecal Contamination Analysis

Coliform and E. coli most probable number (MPN) tests showed a high level of fecal
contamination, especially in Samples 17 (Yogurt Canyon, 12/6/19) and 20 (Stewart’s Drain,
2/24/20), with several other samples reaching the maximum measurements (Table S3).
Coliform and E. coli levels were the lowest in the Tijuana River Estuary (Samples 11, 2, 22,
21, 10, and 16), shown in Table S3. After isolation of HF183 bacteria and crAssphage from
metagenomic data, correlation analysis showed a very significant relationship between the
two groups (p < 3.143 x 10~° for all methods; Table S4), with an R-squared value of 0.857,
shown in Figure 4.
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Figure 3. Alpha diversity metrics across sites based on observed features (A), evenness (B), and

Shannon Index (C).
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Figure 4. Regression Plot of crAssphage and HF183 Bacteria.
3.7. Antibiotic Resistance Genes (ARGs)

The five inactivation-based ARGs that were present the most on average were a
beta-lactamase resistance gene oxa2 plasmid R46 integron (NCBI Accession: M95287.4),
a streptomycin resistance aadA (Ant(3”)-Ila) gene from E. coli plasmid R538-1 (NCBI Ac-
cession: X02340.1), an erythromycin resistance gene mph from an uncultured bacterial
plasmid (NCBI Accession: DQ839391.1), a beta-lactamase 2-like protin bla-OXA2 from
Stenotrophomonas maltophila (NCBI Accession: KJ138219.1), and another streptomycin resis-
tance aadA gene from E. coli (NCBI Accession: AF550679.1). The five efflux-based ARGs that
were present the most on average were a tetracycline resistance gene tetR(39) from Acine-
tobacter sp. LUH5605 (NCBI Accession: AY743590.1), a tetracycline resistance structural
protein tetA from Acinetobacter sp. LUH5605 (NCBI Accession: AY043299.1), a multi-drug
resistant protein gacEdeltal from Pseudomonas aeruginosa (NCBI Accession: U49101.1), a
chloramphenicol resistance protein cmlA5 from uncultured bacterium plasmid pSp1 (NCBI
Accession: AY115475.1), and a chloramphenicol-resistance protein cmlA from Pseudomonas
aeruginosa (NCBI Accession: M64556.1).

The relative abundances of oxa2 and bla-OXA2 genes were significantly different
between Stewart’s Drain and the Boca Rio, T] River Concrete Channel, and Yogurt Canyon
with p-values of 0.0143, 0.0385, and 0.009, respectively. The oxa2 and bla-OXA2 genes were
significantly different within the same sites as with p-values of 0.0143, 0.0256, and 0.0076.
The only significant difference with the aadA genes occurred between Goat Canyon and
Yogurt Canyon (p = 0.0454). There were no significant differences between sites in the aadA
(ANT(3”)-Ila) and mph inactivation genes. In the efflux ARGs, tetA and gacEdeltal were
significantly different between the Stewart’s Drain and Yogurt Canyon sites (p = 0.0192
and p = 0.0294, respectively). Efflux gene cmlA5 abundances were different between Goat
Canyon and the Boca Rio and Yogurt Canyon site (p = 0.0329 and p = 0.0145, respectively).
The only significant difference in the cmlA gene was between Goat Canyon and Yogurt
Canyon (p = 0.0262). There were no significant differences found among sites with the
tetR gene. When the relative abundances of each group of genes were summed, both the
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inactivation and efflux genes showed significant differences between Goat Canyon and
the Boca Rio and Yogurt Canyon sites (Figure 5). In both groups, the abundance of Goat
Canyon was higher than that of Boca Rio and Yogurt Canyon.
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Figure 5. Sum of efflux (A) and inactivation (B) genes found in water samples, by location.

4. Discussion

Metagenomic techniques have the potential to be a powerful public health tool for
tracking current and emerging pathogens. In this study, we demonstrate the utility of
untargeted metagenomic sequencing for analyzing contaminated surface waters as an
epidemiological indicator and diagnostic tool for water quality investigations. We examined
transborder stormwater flows from Tijuana, Mexico into San Ysidro and Imperial Beach,
California during the 2019-2020 winter season. The information obtained from these
experiments provided considerable insight into these highly contaminated areas including
estimates of their relative microbial diversity, the types of microbes present with verification,
evidence of significant antimicrobial resistance markers, and levels of fecal contamination.
These insights will be useful for identifying potential future epidemiological challenges in
the surrounding areas.

Diversity analysis showed the clear compositional separation of some sites, allowing us
to better understand how diversity of species changes based on location. When comparing
differences in alpha and beta diversity based on date, there was no significant trend;
however, differences based on site were significant (Figures 3 and S1), with the distinction
of Yogurt Canyon and Boca Rio sites from the other samples bring particularly noteworthy.
This difference can be partially explained by the location and hydrology of these two sites.
Both Boca Rio and Yogurt Canyon, as they are estuarine, experience tidal influence. At these
sites, especially at Boca Rio, the contamination that may have entered the river upstream
is diluted by the ocean water. Yogurt Canyon also experiences this ocean mixing due to
its location in the coastal floodplain and tidal flows daily. Our data suggest that this tidal
influence significantly impacts the microbial and viral makeup of the environment, while
causing significant changes to microbial ecology on a site-to-site basis.

Fecal analysis showed a strong correlation between HF183-associated bacteria and
crAssphage (Figure 4) and allowed us to clearly determine differences in the levels of
fecal contamination at different sites. These data were corroborated with total coliform
and E. coli measurements done at the same sites (Table S3). Yogurt Canyon sites 2, 11,
and 22 were closely grouped on the regression plot at the lowest level of HF183 bacteria
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and crAssphage. These same sites also had the lowest MPN of coliforms and E. coli,
demonstrating the effectiveness of this test. Similarly, Boca Rio sites 10, 16, and 21 were
also low in metagenomic fecal levels and in coliform and E. coli MPN data. These data
show that Yogurt Canyon, except for site 17, and Boca Rio have a much lower amount of
fecal contamination, likely due to their proximity to the ocean where dilution can occur.
Interestingly, site 8, had elevated crAssphage levels compared to HF-183. This sample was
collected within 3 days of transborder “sudden flow from Mexico” reported to the California
Water Boards, which may explain some of the deviation in BOC and crAssphage:HF-183
compared to other samples. While regulatory agencies consider the best methods to predict
fecal contamination in surface waters, these data show strong correlations between two fecal
indicators, HF183 (bacterial) and crAssphage (viral). Both fecal indicators are considered to
be highly human-specific, and neither requires measurement of live microbes which allows
those collecting samples more flexibility in the timing of laboratory analyses. However,
future studies can focus more closely on the relationships between metagenomic fecal
contamination analysis and more traditional methods to understand factors that predict
the live or potentially infectious fraction of those measured using metagenomics.

Identifying the exact pathogens that may be present in environmental samples allows
for the targeted treatment of contamination, as one pathogenic species may require a dif-
ferent solution than another. In our samples, presence of Salmonella enterica, Escherichia
coli, Arcobacter cryaerophilus, and Trichomonas vaginalis within the metagenomic data demon-
strated the ability to identify common disease-causing agents. Salmonella enterica was the
one of the most commonly observed pathogenic bacteria in our samples, which is widely
associated with Salmonellosis and diarrhea. Arcobacter cryaerophilus, an emerging intestinal
pathogen associated with acute diarrhea [39,40], was not included in the San Diego County
List of Reportable Diseases but was one of the most common bacterial species found in
the data. Because of the high breadth of coverage (79-95% for all samples), it is likely that
this is a true finding of A. cryaerophilus—a pathogen that is not commonly reported nor
surveilled by health systems. This demonstrates the power of untargeted metagenomic
sequencing as a method to discover pathogens that may not have initially been considered.

One of the drawbacks of metagenomic analysis is the possibility of obtaining a false
positive result. There are many different ideologies when it comes to identifying and
validating the results found in metagenomic data, such as clinical laboratory validation and
specific gene identification [41,42]. To validate our metagenomic data and remove any clear
false positives, we utilized the BOC test. Our use of this strategy was novel, increasing
our data rigor and reproducibility beyond typical reporting standards. Samples from
Stewart’s Drain, a transborder flow site where contamination commonly occurs, at each
sampling date were chosen to monitor the changes in BOC at a single site. These samples
were also chosen due to their high metagenomic hit level and had ranges of 1.85-10.14%
coverage for Salmonella enterica species, 11.87-78.56% for E. coli, 79.60-94.81% for Arcobacter
cryaerophilus, and 0% for HIV-1, allowing us to validate the metagenomic results, declaring
the presence of HIV-1 as most likely a false positive. While there is at present no standard
minimum percent BOC for confirming the presence of a certain microbe or virus, we were
able to clearly rule out negative results, such as HIV-1. Moreover, the low BOC for the
Salmonella genomes indicates uncertainty in terms of which species or strain of Salmonella
was present in the samples. Important future goals of this research will be to determine a
percent BOC threshold that can be used to confidently validate metagenomic results and
apply metagenomic and scaffolding tools to aid in the verification process and determine
novel species and strains.

Drug resistance is frequently conferred through several key mechanisms, including
efflux function and lactamase function. Increased efflux activity allows for rapid and
effective export of toxicants, decreasing microbial concentrations [43—45]. Beta lactamases
are enzymes that confer multidrug resistance through hydrolysis of the lactam antimicrobial
enzymes [46]. In doing so, they render the actions of many common antibiotics (including
penicillins and cephalosporins) ineffective. In our study, beta lactamases were significantly
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elevated, especially in sites nearest sewage spills and heavy transborder stormwater flows.
Efflux genes followed this same spatial and quantitative pattern. These data suggest that
microbes with conferred antibiotic resistance are entering the Tijuana River and Estuary
through these spills and stormwater flows. Though it is not uncommon to detect ARGs in
sewage, the abundance of ARGs in our samples may indicate increased use of antibiotics
in Tijuana. However, the flow of these ARGs into the Tijuana River and coastal waters is
a potential concern. Though beach closures occur during and for several days following
major rainfall events, it is possible that the persistence of these genes and their carriers in
the environment may have implications for human health, local microbial gene flow and
drift, and overall ecosystem health.

Wastewater epidemiology is a modern tool to assess communicable diseases in local
populations, as recently deployed around the world to assess prevalence of the SARS-CoV-2
virus [47], including in the Tijuana River [48]. While the present study results have some
interesting implications, there are several limitations and important factors to consider in
the application of this approach to public health questions. As with nearly all molecular
methods to survey microbes, we do not know with certainty if the microbes found by the
search were alive and present at the minimum infectious concentration required to cause
disease. Therefore, detection of these pathogens in these waters does not suggest that the
diseases themselves are transmissible through the surface water. However, any live and
transmittable microbes and viruses may influence disease through normal activities such
as swimming, surfing, and eating locally caught fish. For example, previous publications
have demonstrated metagenomic water quality monitoring to reveal information about
associated disease. Researchers have shown that sequences from environmental water
samples in Haiti and their metagenomic analysis allowed for the microbial characterization
of specific sites, which revealed low numbers of the harmful O1 and O139 strains of V.
cholerae, which agreed with the decline of the occurrence of the disease in the area [49].
Therefore, use of these metagenomics strategies can inform those in public health about
emerging outbreaks or underdiagnosed and under resourced conditions within the local
population. Given this information, we believe that the results obtained in this study can
also provide relevant and helpful information to the public and those who can address the
causes of environmental contamination.

5. Conclusions

Overall, these experiments have exciting applications for detecting potential disease-
causing microbes and viruses present in environmental water samples, verifying these
results using reference genome sequence alignment, comparing microbial and viral diver-
sity across sites, identifying antibiotic resistance, and measuring human fecal contamination
levels all with the same data. There was a clear relationship between proximity to the trans-
border sites (versus estuarine) and fecal contamination, and the genomes of pathogenic
species were detected at these fecal contaminated sites. Though it is very rare to have direct
contact with the surface waters in these transboundary flows, we have shown that these
species persist out to the mouth of the river and therefore recreational exposures (surfing,
swimming, hiking) are possible in the local communities. We are optimistic about the use of
untargeted metagenomic sequencing to fight the increasingly important and international
problem of sewage contamination and pathogen detection in community surface waters.
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