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Introduction
Dengue fever (DF) is a rapidly spreading viral disease transmitted by mosquitoes, and it has 
become one of the most pervasive infectious diseases worldwide.1,2 Dengue fever is caused by the 
dengue virus (DENV) and it manifests in four serotypes: DENV-1, DENV-2, DENV-3, and 
DENV-4.3,4 It is transmitted primarily by Aedes aegypti mosquitoes. Dengue fever presents with 
symptoms similar to those of influenza, including high fever, severe headache, muscle and joint 
pain, rash, and a drop in platelet count.1,3,5 Dengue fever can escalate to more severe forms, such 
as Dengue Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS), which are life-
threatening and require prompt medical attention.6

Globally, DF impacts over 100 million people annually and results in approximately 25 000 deaths, 
with the majority of fatalities occurring among children.1,7,8 The prevalence of DF is widespread 
across tropical and subtropical regions, affecting more than 100 countries.6,9 The DF disease is a 
major public health concern, particularly in urban and semi-urban areas where the Aedes 
mosquitoes breed in stagnant water.10,11

The spread of DF is intricately linked to climatic conditions.5,12,13 Temperature,14 precipitation,15 
and humidity16 play pivotal roles in the life cycle of Aedes mosquitoes and consequently in the 
transmission of DENV. Warmer temperatures accelerate mosquito development and increase the 
frequency of blood-feeding behaviours, thereby enhancing the likelihood of dengue 
transmission.14,17,18 Increased precipitation creates more breeding sites for mosquitoes, while high 
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humidity supports their survival and activity. Recent studies 
have demonstrated that fluctuations in these climatic 
variables can lead to significant variations in dengue case 
numbers.15,19,20 Higher rainfall and increased temperatures 
have been associated with outbreaks in various 
regions.12,13,14,15,16,17,18,19,20 Understanding these relationships is 
crucial for predicting and managing dengue outbreaks, as 
climate conditions directly influence mosquito populations 
and viral transmission dynamics.

To investigate the impact of climatic variables on DF, 
researchers have frequently employed Poisson regression 
models. These models have been used to analyse the effects 
of temperature, rainfall, and other meteorological factors on 
dengue incidence. For example, studies in Sri Lanka, 
Indonesia, and other dengue-endemic areas have utilised 
Poisson regression to explore the relationship between 
climatic factors and dengue outbreaks.21,22,23

In Sri Lanka, a Poisson regression model examined 
meteorological parameters influencing dengue spread in 
Colombo between 2010 and 2018, revealing significant 
associations between climatic conditions and dengue 
incidence.21 Similarly, in Bandung, West Java, Indonesia, a 
Poisson regression model was used to forecast dengue cases 
based on temperature and cumulative rainfall data.22 These 
models have provided valuable insights into how climatic 
variables affect dengue transmission, but they often face 
limitations, particularly when dealing with excess zeros and 
over-dispersion in the data.

Traditional Poisson regression models assume that the 
variance of count data is equal to the mean, a condition often 
violated in epidemiological datasets due to excess zeros, 
where many locations or time periods report no cases.24,25 
This mismatch complicates the use of Poisson regression, as 
its assumptions do not align with observed data patterns, 
leading to inaccurate estimates and misinterpretations of 
disease dynamics. The Zero-Inflated Poisson (ZIP) model 
addresses these limitations by combining a Poisson 
distribution with an additional component that explicitly 
models the excess zeros. This dual approach distinguishes 
between two processes: one generating excess zeros and 
another producing non-zero counts, providing a more 
accurate representation of the data and revealing hidden 
patterns in disease distribution.26,27,28 Successfully applied in 
various fields, including epidemiology, the ZIP model 
enhances the understanding of data characterised by excess 
zeros. For DF, it can identify factors influencing both the 
likelihood of observing zero case reports and the variability 
in non-zero case counts, leading to more precise estimates of 
disease incidence and improved predictions of future 
outbreaks.

Kenya has experienced several significant dengue 
outbreaks, particularly in coastal regions, since the early 
1980s, with notable occurrences in 2011, 2013, and most 
recently in 2017.29,30,31,32 The epidemiology of DF in Kenya 
is characterised by sporadic outbreaks and variability in 

disease incidence, including high frequencies of zero 
counts in some regions and periods (Figure 1). To address 
these challenges, applying the ZIP model to DF data from 
Kenya can offer valuable insights into the factors driving 
disease spread and variability. By analysing data from 
2019 to 2021, this study aims to uncover hidden patterns in 
dengue distribution and identify factors influencing both 
the occurrence of zero case reports and the variability in 
non-zero case counts. The findings are expected to enhance 
our understanding of DF dynamics in Kenya and inform 
more effective public health strategies and resource 
allocation.

Research methods and design
Study setting
Kenya is a country located in East Africa with its capital 
city being Nairobi. It spans from approximately 34 °E to 
42 °E longitude and from 5 °S to 5 °N latitude (Figure 1). It 
is bordered by the Indian Ocean to the southeast, providing 
it with a crucial maritime gateway. The country consists of 
47 county governments and one national government, 
each with distinct roles and responsibilities in health  
service delivery. The country encompasses a diverse range 
of geographic features, from coastal plains to highland 
plateaus and the Great Rift Valley. The total area of Kenya 
is about 580 367 km2, with a population estimated at over 
55 million residents in 2023.

Kenya experiences a range of climates due to its varied 
topography. The coastal region has a tropical climate with 
high temperatures (Figure 2) and humidity (Figure 3) 
throughout the year, while the interior regions experience a 
more temperate climate. The highlands, including areas 
like  Nairobi and the central region, have a cooler, more 
temperate climate. The country generally experiences two 
main rainy seasons: the long rains from March to May and 

FIGURE 1: Distribution of dengue cases across Kenyan counties.
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the short rains from October to December. Annual average 
rainfall ranges from 500 mm in the arid regions to 2000 mm 
in the highland areas, and average temperatures typically 
range from 15 °C to 30 °C depending on the region and 
altitude.

Data description
Monthly dengue cases in Kenya for the period of 2018–2021 
were used in this study. Dengue fever is classified as a 
notifiable communicable disease in Kenya, with its 
surveillance and reporting managed according to guidelines 
established by the Ministry of Health.33,34 The diagnosis of DF 
is based on a combination of epidemiological exposure 
history, clinical manifestations, and laboratory tests such as 
white blood cell counts. For cases where the diagnosis 
is  unclear, a specific immunoglobulin G enzyme-linked 

immunosorbent assay (IgG ELISA) test is conducted to 
confirm the presence of DENV.34 All diagnostic criteria have 
remained consistent throughout the study period.

To ensure accurate tracking of dengue outbreaks, the 
Kenyan Ministry of Health has developed a comprehensive 
reporting system for notifiable diseases. Prior to 2019, 
data  on notifiable communicable diseases were reported 
manually through paper forms submitted by local health 
facilities to county health offices and then to the 
national health authorities.35,36,37 In 2019, Kenya transitioned 
to a digital reporting system through District Health 
Information Software 2 (DHIS2), which facilitates real-time 
data submission and management. Data from 2019 to 2021 
were extracted from DHIS2.

Monthly weather data, including average minimum 
temperature (Tmin), average maximum temperature 
(Tmax), average relative humidity (Hum), and total rainfall 
(Rain), were obtained from the Kenya Meteorological 
Department.

Model formulation
The application of the ZIP model to DF data in Kenya marks 
a significant advancement in understanding the disease’s 
epidemiology. Unlike traditional Poisson regression 
models, which can struggle with excess zeros and over-
dispersion in the data, the ZIP model provides a more 
accurate and comprehensive analysis of dengue cases. This 
enhanced approach can lead to better predictions of disease 
outbreaks, more targeted public health interventions, and 
more efficient allocation of resources. This study aims to 
leverage the strengths of the ZIP model to gain deeper 
insights into DF dynamics in Kenya. By addressing the 
challenges associated with excess zeros and variability in 
disease data, the research seeks to offer valuable information 
that can improve public health responses and bolster 
ongoing efforts to combat DF.

The ZIP regression model is as follows:

Let Pk denotes the probability of observing a zero count in the 
ZIP model. The formula for Pk is given by:

=
+

exp y x
exp y x

P ( )
(1 )

i ki

i ki
k � [Eqn 1]

Where yi is the response variable (the count) for the ith 
observation. xki represents the covariates or predictors for the 
kth term.

The numerator exp(yixki) indicates the impact of the covariates 
on the count data. The denominator exp(1+yixki) normalises 
this to ensure the probability is between 0 and 1. The expected 
count µk follows a Poisson distribution with mean µk. It is 
given by:

µk = exp(βkxki)
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FIGURE 2: Dengue cases and temperature overlay.
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Where βk are the parameters associated with the predictors 
xki; exp(βkxki) models how the predictors influence the mean 
of the Poisson distribution. 

The zero-inflation part of the model uses a logit link function 
(mixed linear model) to model the probability of extra zeros. 
The logit function is defined as:

=
−
P
P

Logit (P ) log
1
k

k
k � [Eqn 2]

This function transforms the probability Pk (of observing an 
extra zero) into a log-odds scale.

The logit function is used to model the binary outcome of 
whether an observation is an excess zero or not:

∑( ) =
=

Logit P y X
k

j

ik
0

 ki

Log X
k

j
k k1 ki∑µ = β

=

� [Eqn 3]

Combining these components, the ZIP model can be 
expressed as:

Logit (P )

Log ( ) Xk

k ki

k ki

= α + γ

µ = β
� [Eqn 4]

The Logit(Pk) models the excess zeros using a logit link 
function. This component determines the probability 
that  an observation is an ‘excess zero’ rather than a 
count  drawn from the Poisson distribution. Log µk 
models  the actual count data (including zeros) using 
a  Poisson distribution with a mean µk that depends on 
the  predictors.

Ethical considerations
Ethical clearance to conduct this study was obtained from the 
University of Nairobi College of Health Sciences Kenyatta 
National Hospital Ethics and Research Committee (No. 
KNH-ERC/A127). The data used in this study were derived 
from disease surveillance sources, from which all personal 
identifiers had been permanently removed. As a result, no 
specific individuals could be identified from the data. Given 
the anonymised nature of the data, this study did not require 
further ethics clearance.

Results
Initially, a descriptive analysis was conducted for all variables 
to summarise their characteristics (Table 1). The mean 
number of dengue cases was 456, with a variance of 659, 
suggesting potential over-dispersion. To formally assess this, 
we applied Böhning’s over-dispersion test, which compares 
the sample mean with the sample variance. The O statistic for 
dengue cases was 456.3, with a p-value of 0.004, indicating 
significant over-dispersion.38

Furthermore, we employed the Vuong test to determine 
whether the observed over-dispersion was due to excess 
zero counts (zero inflation) or true heterogeneity in the 
data. The results of these tests guided our choice of model, 
favoring a zero inflated model over a standard Poisson 
model to account for the excess variability.

In the analysis of DF spread in Kenya using the ZIP modelling 
approach, an examination of Pearson residuals provides 
insight into the model’s performance and potential areas for 
improvement (Table 2).

The median Pearson residual is –0.1909; it is close to zero, 
suggesting that for the majority of observations, the ZIP 
model’s predictions are relatively accurate. This indicates that 
the model effectively captures the general trend in DF 
incidence across the dataset, providing a reasonable fit for 
most locations and time points. The observed maximum 
residual is 24.6637 which is notably high, indicating significant 
discrepancies between the observed dengue cases and those 
predicted by the model in certain instances. This extreme 
positive residual points to cases where the model under-
predicts dengue cases substantially. Such outliers highlight 
specific scenarios where the ZIP model’s assumptions or 
covariates might not fully capture the variability in the data.

The results from the Poisson regression model indicate that 
temperature and humidity have significant positive effects 
on dengue cases, while rainfall has a significant negative 
effect. These findings are presented in Table 3.

The intercept of the Poisson regression model is estimated at 
0.1109, with a standard error of 0.1515. The z-value of 0.732 
and the associated p-value of 0.464 indicate that the intercept 
is not statistically significant. This implies that the baseline 
log count of dengue cases, when all predictor variables are at 

TABLE 3: Count model coefficients (Poisson with log link).
Variable Intercept Std. error Z-values Pr(>|z|)

(Intercept) 0.1109 0.1515 0.7320 0.464
Temperature 0.0558 0.0053 10.4970 < 2e-16
Rainfall -0.0045 0.0003 -16.5230 < 2e-16
Humidity 0.0578 0.0024 24.1570 < 2e-16

Std., standard.

TABLE 2: Pearson residuals.
Statistic Value

Minimum -0.1916
1st Quartile -0.1913
Median -0.1909
3rd Quartile -0.1903
Maximum 24.6637

TABLE 1: Descriptive statistics of key variables and dengue fever cases. 
Variable Mean Variance Minimum Maximum O statistic 

Dengue cases 456 659 0 15 000 456.3
Temperature (°C) 25 29 24 30 -
Rainfall (mm) 680 2300 250 2010 -
Humidity (%) 55 76 30 85 -

Note: p-value = 0.004.
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their reference levels, is not significantly different from zero. 
However, because temperature, rainfall, and humidity 
cannot realistically be zero, the intercept’s interpretability in 
isolation is limited.

The coefficient for temperature in Table 3 is 0.0558 (standard 
error [s.e.] = 0.0053, z = 10.497, p < 2e-16), indicating a 
highly statistically significant positive association with 
dengue cases. Specifically, a 1 °C increase in temperature is 
associated with an expected increase of approximately 
‘0.056 dengue cases per month’. Scaling this effect, a 10 °C 
rise in temperature would lead to an increase of 
approximately ‘0.56 cases per month’, highlighting the 
critical role of rising temperatures in exacerbating dengue 
transmission risk.

For ‘rainfall’, the coefficient is –0.0045 (s.e. = 0.0003, z = –16.523, 
p < 2e-16), also highly statistically significant. This negative 
relationship suggests that for every 1 mm increase in rainfall, 
there is an expected reduction of approximately ‘0.0045 
dengue cases per month’. Over a larger scale, an increase in 
rainfall by 100 mm would reduce dengue cases by about ‘0.45 
per month’. While counter-intuitive, this inverse relationship 
could be explained by the disruptive effects of heavy rains on 
mosquito breeding sites, which may decrease mosquito 
populations and thereby lower dengue transmission.

The coefficient for ‘humidity’ is 0.0578 (s.e. = 0.0024, z = 24.157, 
p < 2e-16), showing a strongly significant positive relationship. 
This implies that a 1% increase in humidity corresponds to an 
expected rise of approximately ‘0.058 dengue cases per 
month’. Over a larger scale, a 10% increase in humidity 
would result in an additional ‘0.58 cases per month’. This 
finding underscores the role of high humidity in enhancing 
mosquito survival and increasing the potential for DENV 
transmission.

The findings indicate that temperature and humidity have a 
positive effect on dengue cases, while rainfall has a negative 
impact. These relationships emphasise the importance of 
climatic conditions in influencing the spatial and temporal 
dynamics of DF.

The significant zero-inflation component supports the use of 
the ZIP model over a standard Poisson model, as it accounts 
for the excess zeros that are systematically present in the data. 
This feature of the ZIP model is crucial for accurately 
representing and analysing the distribution of dengue cases, 
as it provides a more nuanced understanding of both the count 
of cases and the occurrence of zero counts in the dataset.

The intercept (Table 4) for the zero-inflation component of 
the model is estimated at 3.3032, with a standard error of 
0.2277. The z-value of 14.51 and the p-value less than 2e-16 
indicate that this coefficient is highly statistically significant 
(Table 4). The positive and significant intercept in the zero-
inflation model suggests a high likelihood of observing 
excess zeros in the dataset. In other words, many 

observations in the data have zero dengue cases more 
frequently than would be expected by a standard Poisson 
distribution alone. This indicates that the zero-inflation 
component is effectively capturing a structural characteristic 
of the data where certain locations or periods consistently 
report no dengue cases. The high intercept value implies 
that these excess zeros are not just random fluctuations but 
reflect a systematic aspect of the data. This could be due to 
several factors such as non-endemic areas where DF does 
not occur, effective control measures that prevent outbreaks, 
or other factors leading to a consistent absence of cases 
(Table 5).

The model fit statistics for the ZIP model and the standard 
Poisson model are summarised in Table 5. The ZIP model 
has an akaike information criterion (AIC) value of 5230.959 
and a log-likelihood of 0.8070. In contrast, the Poisson 
model exhibits a substantially higher AIC value of 
27061.367, with the log-likelihood value not applicable 
(N/A) due to its higher complexity in this context.

The AIC is a measure used for model comparison, where a 
lower AIC value indicates a better fit when accounting for 
model complexity. The substantial difference between the AIC 
values for the ZIP and Poisson models suggests that the ZIP 
model provides a significantly better fit for the data. This is 
particularly relevant given the presence of excess zeros in the 
dataset, which the ZIP model is specifically designed to handle.

The log-likelihood value for the ZIP model, which is positive 
at 0.8070, indicates that the model fits the data well, especially 
in capturing the distribution of dengue cases and the excess 
zeros. Although the Poisson model’s log-likelihood was not 
available, its much higher AIC value further supports that 
the ZIP model’s fit is superior.

The ZIP model not only demonstrates a significantly better 
fit to the data as evidenced by the lower AIC value but also 
effectively addresses the zero-inflation present in the 
dataset. This makes it the preferred model for analysing 
DF cases in this study, as it provides a more accurate and 
reliable representation of the underlying data structure.

Discussion
This study used the ZIP model to investigate the impact of 
climatic factors on DF incidence in Kenya from 2019 to 2021. 
The ZIP model proved effective in handling the over-

TABLE 5: Model fit and comparison.
Model type AIC Log-likelihood

ZIP model 5230.959 0.8070
Poisson model 27061.367 N/A

ZIP, Zero-Inflated Poisson; AIC, akaike information criterion; N/A, not applicable

TABLE 4: Zero-inflation model coefficients (Binomial with logit link).
Variable Intercept Std. error Z-score Pr(>|z|)

(Intercept) 3.3032 0.2277 14.51 < 2e-16

Std., standard.

http://publichealthinafrica.org
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dispersion and excess zeros present in the data, offering a 
more nuanced understanding of dengue dynamics compared 
to traditional Poisson models.

Our findings reveal that temperature and humidity have a 
positive relationship with dengue cases, while rainfall shows 
a negative effect. Specifically, the coefficient for temperature 
suggests that as temperatures rise, the incidence of DF 
increases. This result aligns with other research that 
warmer  temperatures accelerate mosquito development 
and  increase their activity, thereby enhancing dengue 
transmission.14,16,17,18,19,22 Similarly, the positive association 
with humidity supports the understanding that higher 
humidity levels create favourable conditions for mosquito 
survival and DENV transmission.16,22,23

On the other hand, the negative relationship between 
rainfall and dengue cases is less spontaneous. Increased 
rainfall usually creates more breeding sites for mosquitoes, 
which would typically be expected to increase dengue 
incidence. However, this study’s findings might be 
explained by the possibility that heavy rains disrupt 
mosquito breeding habitats or that effective vector control 
measures were in place during the study period.15,19,22,39,40,41 
Such factors could have mitigated the impact of rainfall on 
dengue transmission.

The ZIP model’s performance, indicated by its lower AIC 
and higher log-likelihood compared to the standard Poisson 
model, underscores its suitability for this analysis. The 
significant excess zeros in the dataset make the ZIP model a 
better fit, as it accounts for the zero-inflation that traditional 
Poisson models fail to address. This improved model fit 
confirms the ZIP model’s ability to accurately represent the 
distribution of dengue cases and better inform public health 
strategies.

The findings underscore the importance of climate-informed 
strategies in managing dengue outbreaks. The positive 
associations between temperature, humidity, and dengue 
incidence suggest that public health interventions could be 
timed and scaled based on climate forecasts, particularly in 
warmer, more humid months when transmission risk is 
highest. By understanding these environmental triggers, 
health authorities can prioritise resources for mosquito 
control, public awareness campaigns, and healthcare 
preparedness in areas expected to experience high 
temperatures and humidity.

The insights from the ZIP model allow for more nuanced 
predictions by accounting for both the occurrence and count 
of dengue cases. This can help health authorities develop 
proactive, data-driven responses that not only predict when 
outbreaks are likely to happen but also address the intensity 
of potential outbreaks. By integrating climate variables into 
surveillance systems, regions can adapt quickly, deploying 
preventive measures when conditions are most conducive to 

dengue spread, which ultimately enhances the efficiency of 
public health interventions.

Limitations 
The reliance on secondary data from the Kenyan Ministry 
of Health introduces potential issues related to data 
accuracy and completeness. Variations in data quality 
affect the reliability of the results. Additionally, while the 
ZIP model addresses zero-inflation, its assumptions may 
not fully capture all aspects of the data. Further exploration 
of alternative models or additional covariates might be 
necessary to refine the analysis.

The geographic and temporal scope of the study focusing 
on Kenya from 2019 to 2021 did not encompass long-term 
trends and regional variations. Expanding the analysis to 
cover a broader time frame and additional regions could 
provide a more comprehensive view of DF dynamics. 
Moreover, the use of average monthly weather data 
may  overlook micro-climatic variations or short-term 
fluctuations that could influence dengue transmission. 
Incorporating more granular climatic data could enhance 
the model’s accuracy.

Conclusion
The ZIP model has provided valuable insights into the 
relationship between climatic variables and DF incidence in 
Kenya. Th ZIP model addresses the excess zeros and 
over-dispersion in the data. This has led to enhanced 
understanding of how temperature and humidity influence 
DF, while offering a more nuanced perspective on the impact 
of rainfall.

Future research should aim to address the limitations 
identified in this study. Improved data accuracy, broader 
geographic and temporal coverage, and the integration of 
more detailed climatic data could further refine the 
understanding of DF dynamics. Such efforts will contribute 
to more targeted interventions and enhanced strategies for 
combating DF in Kenya and other affected regions.
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