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Introduction
Meditation is a mental discipline by which one attempts to get 
beyond the reflexive, “thinking” mind into a deeper state of 
relaxation or awareness and consciousness. It is usually based 
on ancient beliefs that make up the component of Eastern 
religions and has been practiced for over 5000 years. Many 
religions have developed their own method and technique of 
meditation that allows their adherents to arrive at a higher state 
of consciousness. Hinduism is known to be the first religion 
to put emphasis on meditation during spiritual and religious 
practices. The principal form of meditation in Hinduism is 
Yoga. Yogic meditation, puts an emphasis on both the physical 
body and the mind. It serves to engage oneself in a specific 
attention set. Within Yogic meditation, there are multiple 
sections – Raja Yoga, Jnana Yoga, Hatha, Sutra Shabda, Bhakti 
and Japa. The latter two are significant to this research. Bhakti 
Yoga uses a form of meditation that requires one to focus on 
an object of love or devotion. Japa Yoga calls for the practice 
of meditation which requires repeating a Mantra aloud or 

silently. Given that the various forms of Yogic meditation serve 
to engage oneself in a specific attention set, meditative styles 
can be classified into two types of extremes – mindfulness and 
concentrative.[1] Mindfulness practices involve allowing any 
thoughts, feelings or sensations to arise while maintaining a 
specific attention stance: awareness of the phenomenal field 
as an attentive and nonattached observer without judgment 
or analysis. Zen, Vipashyana and the Western adaptation 
to mindfulness meditation are some of the examples.[2] 
Concentrative meditations techniques involve focusing on 
a specific mental or sensory activity, a repeated sound, an 
imagined image or specific body sensations such as the breath. 
Examples include Bhakti Yoga, Japa Yoga and the Buddhist 
Samatha meditation, which focuses on the sensation of breath. 
Even these two types used to elicit specific states differ across 
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practices, they both produce trait changes in self‑experience: 
eliciting shift toward expanded experience of self not centered 
on the individual’s body schema and mental contents.[3‑6] Since 
both types of styles can have similar results, many meditative 
techniques lie somewhere on a continuum between the poles 
of these two general methods.[5,7,8]

Functional magnetic resonance imaging  (fMRI) is the 
imaging modality that measures brain activity by detecting 
changes associated with blood flow. This technique relies 
on the fact that cerebral blood flow and neuronal activation 
are coupled. When an area of the brain is in use, blood flow 
to that region also increases. This results in a corresponding 
local reduction in deoxyhemoglobin because the increase in 
blood flow occurs without an increase of similar magnitude 
in oxygen extraction.[9‑12] Since deoxyhemoglobin is 
paramagnetic, it alters the T2‑weighted magnetic resonance 
image signal.[13‑19] Thus, deoxyhemoglobin is sometimes 
referred to as an endogenous contrast enhancing agent 
and serves as the source of the signal for fMRI. Using an 
appropriate imaging sequence, human cortical functions can 
be observed without the use of exogenous contrast enhancing 
agents on a clinical strength scanner.[20‑24] Functional activity 
of the brain determined from the magnetic resonance signal 
has confirmed known anatomically distinct processing 
areas in the visual cortex,[15,18,24‑26] the motor cortex[27,28] and 
Broca’s area of speech and language related activities.[29,30] 
Furthermore, a rapidly emerging body of literature documents 
relate corresponding findings between fMRI and conventional 
electrophysiological techniques to localize specific functions 
of the human brain.[31‑36] Consequently, the number of 
medical and research centers with fMRI capabilities and 
investigational programs continues to escalate. Overall, fMRI 
studies of those participating in meditation are on the cutting 
edge of research and will hopefully demonstrate why and how 
meditation is able to affect the brain and what those changes 
mean from a functional standpoint.

Methods
Four trained healthy Patanjali Yoga practitioners in their 
mid‑60s participated in this prototype interventional study. 
A three‑part 1‑min block design alternating between relaxation 
phase  (control condition), meditation phase with visual 
fixation and meditation phase with auditory stimulation was 
used to acquire ten contiguous 8‑mm thick axial brain sections 
in a 1.5 Tesla MRI scanner was taken. The data were analyzed 
using a standard statistical parametric mapping software. 
Images were generated depicting contrast among various 
combinations of the three Yoga meditations. To establish a 
control period, the test participants were in a relaxation phase 
during the first part of the study. During the second part, the 
test participants achieved auditory stimulation by meditation 
on the sound AUM  (Omm). During the last part, the test 
participants focused on visual meditation using beautiful 
scenery. fMRI scans were obtained during each phase to 
identify brain activity.

Results
Functional MRI images revealed significant activation in the 
right prefrontal regions of the brain during the visual  and 
auditory fixation meditation phases compared to simple 
relaxation phase in all the participants. A comparison of visual 
and auditory fixations revealed shifts within the prefrontal and 
temporal regions of the brain depending on the fixation mode. 
Several other regions such as occipital and temporal regions 
of the brain were also activated during the visual and auditory 
meditation phases. The occipital lobe showed more activity 
during the visual meditation state [Figure 1].

Discussion
Meditation has been linked to a healthy living style, but the realm 
of evidence for neurological benefits has not been fully explored. 
Several modalities such as electroencephalography (EEG) have 
been used in the past to study localized brain activities during 
meditation. Although the beneficial effects of mediation have 
long been studied and documented, the scientific evidence 
has been lacking. The beneficial effects of Yogic meditation 
can be proved with the aid of modern technology and state 
of the art imaging techniques. Therefore, many scientists 
have resorted to brain scans to determine the effects of 
meditation. With the advent of fMRI real‑time data on the 
effects of meditation on various centers of the brain that 
are critical in maintaining disease‑free relaxed state can be 
obtained. Functional MRI is now a mature methodology to 
examine neural correlates of brain function. A large number 
of fMRI studies have been conducted to identify brain regions 
affected by meditation. Although the results are not consistent 
from study to study, fMRI generally shows increases in 
dorsolateral prefrontal cortex  (DLPFC),[37,38] the anterior 
cingulate cortex  (ACC) and left prefrontal cortex.[39] The 
increase in DLPFC has been associated with greater regulation 
of emotions by meditators.[40] Furthermore, the activated 
regions have been shown to vary between long  and short 
term meditators with enhanced activity greater in the highly 
trained meditators suggesting that changes are actually due 
to mental training.[41] The prefrontal cortex is responsible for 
controlling the decision‑making processes and is one of the last 
structures to develop in the human brain.[42] The pons modulates 
the autonomic functions by controlling functions such as 
heart rate and breathing rate. The cerebellum is generally 
involved with balance, coordination, spatial processing and 
cognition. A  recent study has shown not only an increased 
activation in the anterior cingulate gyrus and dorsolateral 
prefrontal cortex but also an associated deactivation in pons 
and cerebellum.[43] Another fMRI study of Kundalini Yoga 
entailing a Mantra combined with heightened breath awareness 
showed increases in the putamen, midbrain, pregenual ACC 
and the hippocampal–parahippocampal formation, as well as 
areas within the frontal and parietal cortices. Further, with 
increased meditation time, there were robust activity increase 
in these areas.[44] A recent study investigating the depth of 
mental silence in long‑term meditators and volume of different 



Mishra, et al.: Changes in functional MRI with Yogic meditation

110 AYU | Volume 38 | Issue 3-4 | July-December 2017

brain regions found positive correlation between gray matter 
volume in medial prefrontal cortex including rostral ACC and 
depth of mental silence. The depth mediation states were also 
associated with significantly increased functional capacity 
between medial prefrontal cortex and bilateral anterior 
insula/putamen. This is believed to play an important role in 
emotion regulation.[45] Hippocampus through its modulation of 
cortex is believed to play a pivotal role in intermediating the 
benefits of meditation.[46] Another important study analyzed 
hippocampal volumes in meditators and nonmeditators. This 
study indicated that the size of the left and right hippocampal 
volumes is larger in meditators than in controls, significantly 
so for the left hippocampus.[47] However, this particular study 
indicated greater activity in the right hemisphere of the brain 
versus the left during meditation. As a result, meditation 
might have different effects on the structure and activity of 
the brain. The study revealed significant activation in the 
right prefrontal regions of the brain during the visual  and 
auditory‑fixation meditation phases. The prefrontal cortex is 
a vital area of the brain that is associated with higher order 
brain functions such as concentration, decision‑making and 
awareness. The selective activation of prefrontal cortex during 
meditation aids in stress free lifestyle. The decision‑making 
capacity of the individuals improves dramatically and prevents 
wrongdoings. This in turn has a positive effect not only on the 

individual himself but also the society. Individuals are more 
focused in their tasks and able to concentrate better than their 
counterparts. The attention span improves intensely and they 
become more productive in day to day tasks. This creates a 
sense of awareness in the individual. They are able to plan their 
chores better and create a stress‑free environment around them. 
This prefrontal cortex of the brain has also been implicated in 
modulating pain. With selective activation of prefrontal cortex, 
there is improved pain tolerance. Pain is currently one of the 
major factors that determine the quality of life of an individual. 
This not only affects the individual but also adversely affects 
the society. With meditation, one is able to modify the pain 
centers of the brain which conversely improves the quality of 
life. There is also seen a greater density of white matter and 
gray matter in areas of the brain responsible for processing and 
regulation of pain. Some studies have also reported positive 
correlation between the duration of Yoga and the volume of 
gray matter in the left insular cortex. Meditation is believed to 
reduce pain by increasing distraction capacity. The two main 
techniques that affect distraction capacity include focused 
attention and open monitoring. This study also demonstrated 
selective activation of temporal cortex and occipital cortex 
during various phases of meditation. This shows the level of 
coordination in the brain during meditation. It is a complex 
phenomenon involving various centers of the brain which are 

Figure 1: (a) Scan of relaxed state. (b) Scan of visual meditation state. (c) Scan of auditory meditation state. (d) Scan of average activity during the 
visual and auditory meditation states. (e) Scan of activity during the auditory meditation state which is not present during the visual meditation state. 
(f) Scan of activity during visual mediation state which is not present during the auditory meditation state
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critical in maintaining relaxed state. These centers work in 
synchronization to maintain the emotional lability. The centers 
of stress that are activated as a result of pain are selectively 
reorganized with the help of meditation. This in turn results 
in boosting the emotional state of the mind and the body. 
This study tries to add to growing body of evidence regarding 
beneficial effects of Yogic meditation in boosting the emotional 
state of an individual.

Conclusion
A pilot study on four healthy meditators to observe the 
differences in brain activity during a relaxed state, an auditory 
mediation state and a visual meditation state was conducted. 
Functional MRI scans were performed during each phase and the 
results indicated an increase in the activity of the right prefrontal 
cortex during visual and auditory meditation states. In addition, 
an increase in the activity of the temporal and occipital regions 
was also observed during the meditation states. However, a 
larger study needs to be conducted for more conclusive results.
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