# Physicochemical characterization of *Shadguna Balijarita Makaradhwaja*: A preliminary study

#### Sanjay Bhausaheb Khedekar, Prashanta Bedarkar<sup>1</sup>, Pradeepkumar Prajapati<sup>2</sup>

Department of Rasashastra and Bhaishajya Kalpana, Shree Satashrungi Ayurveda Mahavidyalaya and Hospital, Nashik, Maharashtra, <sup>1</sup>Department of Rasashastra and Bhaishjya Kalpana, IPGT and RA, Gujarat Ayurveda University, Jamnagar, Gujarat, <sup>2</sup>Department of Rasashastra and Bhaishajya Kalpana, All India Institute of Ayurveda, New Delhi, India

### Abstract

**Background:** *Makaradhwaja*, a herbomineral preparation, is a popular aphrodisiac and rejuvenator in traditional medicine. It is prepared from purified gold, mercury, and sulphur in different proportions by the application of gradually increasing heat in modified electrical muffle furnace (*Valuka Yantra*). To find out major and minor trace elements and structural composition of *Makaradhwaja*, its chemical characterization is needed. **Aim:** This study aims to develop preliminary physicochemical profile of *Shadguna Balijarita Makaradhwaja* (SBM). **Materials and Methods:** Physicochemical characterization of *Shadguna Balijarita Makaradhwaja* (SBM). **Materials and Methods:** Physicochemical characterization of *Shadguna Balijarita Makaradhwaja* was carried out by adopting various techniques, viz. X-ray diffraction, inductively coupled plasma optical emission spectrometry (ICP-OES), and Fourier transform infrared spectroscopy to determine structure and contents. **Results and Conclusion:** *Shadguna Balijarita Makaradhwaja* contains 12131 ppm of gold in inductively coupled plasma optical emission spectrometry study. FTIR study revealed few organic compounds. Structurally, it is a mercuric sulfide having an empirical formula HgS.

Keywords: Cinnabar gold, Kupipakwa Rasayana, Makaradhwaja, mercuric sulfide

### Introduction

Rasashastra, a branch of Ayurveda pharmaceutics, mainly deals with mercurial, herbomineral and herbometallic medicinal preparations. Due to its therapeutic efficacy, quicker action, and minimum dosage, it is the most popular branch in the Indigenous system of medicine.<sup>[1]</sup> Mercurial preparations are the basic ideology of this stream. Different forms of mercurial preparations were mentioned in the classical texts of Rasashastra; Kupipakwa Rasayana is one of them. These Kupipakwa Rasayana differs due to its proportion of mercury and sulphur. The concept of Balijarana (heat treatment to purified mercury in the presence of purified sulphur) is one of the prime concepts.<sup>[2]</sup> In the contexts of Balijarana, Shadguna Balijarana is mentioned to be more potent than Samaguna and Dwiguna.<sup>[3]</sup> However, among all Kupipakwa Rasayanas due to gold content, Makaradhwaja is therapeutically more potent and popular. Classical texts of Ayurveda mentioned Makaradhwaja as a drug of choice in many disorders such as Sandhivata (arthritis), Kushtha (skin disorders), Madhumeha (diabetes), Daurbalya (fatigue) and used as major Vajikarana (aphrodisiac) and Rasayana (rejuvenator)

#### Access this article online

Quick Response Code:

Website: www.ayujournal.org

**DOI:** 10.4103/ayu.AYU\_126\_15

agent.<sup>[4]</sup> Few scholars reported its therapeutic and experimental studies.<sup>[5-10]</sup> As it contains metal-like gold and heavy metal-like mercury, its structural and chemical analysis is needed, which will help in the pharmacological and therapeutic assessment of the compound. Here, in the present study, *Shadguna Balijarita Makaradhwaja* was prepared and its physicochemical characterization was carried out by using sophisticated techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Inductively coupled plasma optical emission spectrometry (ICPOES).

## **Materials and Methods**

### Preparation of Makaradhwaja

Test drug *Makaradhwaja* was prepared as per the classical text reference<sup>[11]</sup> in the departmental laboratory. Raw

Address for correspondence: Dr. Sanjay Bhausaheb Khedekar, Arya Ayurved, 2, Suvidhinath Sosc, Opp Main Fire Brigade, Shingada Talao, Gadkari Chowk, Nashik - 422 001, Maharashtra, India. E-mail: chatrapati82@gmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

**How to cite this article:** Khedekar SB, Bedarkar P, Prajapati P. Physicochemical characterization of *Shadguna Balijarita Makaradhwaja*: A preliminary study. Ayu 2016;37:230-7.

230

Material *Swarna* (gold) was purchased from local market, and *Hingula* (cinnabar) and *Gandhaka* (sulfur) were collected from the Pharmacy of Gujarat Ayurved University, Jamnagar [Table 1]. Gold was subjected to *Shodhana*<sup>[12]</sup> and its foils were prepared. Cinnabar was processed to *Shodhana* (purification),<sup>[13]</sup> and *Parada* (mercury) was procured from its sublimation by using *Nada Yantra* method.<sup>[14]</sup> Powder of cinnabar was spread over the cotton cloth and wrapped. The wrapped cloth was put inside the earthen pot and ignited, immediately *Nada* (big earthen vessel) was kept over earthen pot. After 24 h, evaporated mercury was collected by rubbing the inner surface of *Nada*. *Gandhaka* (sulfur) was subjected to *Shodhana* by melting it and pouring in cow milk and continuously heated in the same milk for 3 h.<sup>[15]</sup> Processed gold foils, mercury, and sulfur were taken in ratio of 1:8:48 in weight. Amalgamation was done by adding gold foils to purified mercury. Fine lusterless powder of black sulfide of mercury (*Kajjali*) was prepared by triturating purified sulfur with above-prepared amalgam. *Kajjali* was levigated with juice of *Aloe barbadensis* and juice of flowers of *Hibiscus rosa sinensis* for 3 h consecutively and the levigated *Kajjali* was dried. The fine powder was filled in seven-layer mud-smeared cotton cloth wrapped glass bottle (*KachaKupi*) and heated for 12 h [Table 2]. The heat was provided in controlled manner and gradually increasing temperature in modified electrical muffle furnace (Modified *Valuka Yantra*), i.e., mild heat100°C to 250°C for 2.5 h, *Madhyamagni* (moderate heat) 250°C to 450°C for 4.5 h, and *Tivraagni* (strong heat) 450°C to 600°C for 5 h. After the desired characteristic features of product

. .....

| Table 1: Quantity of Ingredients use for preparation of Shadguna Balijarita Makaradhwaja (SBM) |                       |                              |                                                                      |                  |                                        |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------------|------------------------------|----------------------------------------------------------------------|------------------|----------------------------------------|--|--|--|
| Gold                                                                                           | Mercury               | Sulfur                       | Juice of Aloe barbadensis Juice of flowers of Hibiscus rosa sinensis |                  |                                        |  |  |  |
| 5 g                                                                                            | 40 g                  | 240 g                        | 75 mL                                                                |                  | 75 mL                                  |  |  |  |
| Results after preparation (Average)                                                            |                       |                              |                                                                      |                  |                                        |  |  |  |
| Sample                                                                                         | Heat duration (h)     | Weight of <i>Kajjali</i> (g) | <i>Makaradhwaja</i> (g)                                              | Flame duration ( | h) Percentage of Makaradhwaja obtained |  |  |  |
| SBM                                                                                            | 12                    | 290.50                       | 42                                                                   | 2:05             | 91.31                                  |  |  |  |
| SBM· Sha                                                                                       | douna Balijarita Maka | radhwaia                     |                                                                      |                  |                                        |  |  |  |

-- -

SBM: Shadguna Balijarita Makaradhwaja

| Time (h) | Temperature setting (°C) | Temperature recorded (°C) | Observations                                                                                                                                                            |
|----------|--------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00:00    | 100                      | 37                        | Switch on the furnace                                                                                                                                                   |
| 00:30    | 150                      | 102                       | Slight sulfur aroma was smelt at the glass bottle mouth white fumes were seen                                                                                           |
| 01:00    | 200                      | 148                       | Fumes turns slightly yellowish                                                                                                                                          |
| 01:30    | 250                      | 202                       | Fumes turns slightly yellowish                                                                                                                                          |
| 02:00    | 250                      | 251                       | Melting of Kajjali started and yellowish fumes continued                                                                                                                |
| 02:30    | 300                      | 258                       | Melting of Kajjali with yellowish fumes continued                                                                                                                       |
| 03:00    | 300                      | 305                       | Yellowish color deposition at neck of the bottle                                                                                                                        |
| 03:30    | 350                      | 302                       | Kajjali-semi-liquid form, yellowish fumes increased                                                                                                                     |
| 04:00    | 350                      | 347                       | Kajjali-molten and yellowish fumes increased                                                                                                                            |
| 04:30    | 350                      | 352                       | Kajjali-molten and yellowish fumes increased                                                                                                                            |
| 05:00    | 350                      | 356                       | Kajjali-molten and yellowish fumes increased                                                                                                                            |
| 05:30    | 400                      | 348                       | Complete molten Kajjali and yellowish fumes increased                                                                                                                   |
| 06:00    | 450                      | 403                       | Yellowish fumes increased, stickiness was found inside the glass bottle                                                                                                 |
| 06:30    | 450                      | 452                       | Profuse dark yellowish fumes started                                                                                                                                    |
| 07:00    | 475                      | 454                       | Fumes disappeared and reddish blue-colored flame was seen                                                                                                               |
| 07:30    | 475                      | 472                       | Flame increases gradually                                                                                                                                               |
| 08:00    | 500                      | 479                       | Flame increases to about 4-5 inches height                                                                                                                              |
| 08:30    | 500                      | 501                       | Flame gradually decreased and slight sulfur deposit found at the neck of the glass bottle. Red tinge at the bottom of the glass bottle was also observed                |
| 09:00    | 550                      | 505                       | Slight bluish flames persisting at the neck of the glass bottle and red tinge at the bottom was gradually increased                                                     |
| 09:30    | 550                      | 552                       | Flame disappeared, bottom of the glass bottle was found bright red, cold iron rod test and copper coin test were found positive. Corking was done immediately at 9:10 h |
| 10:00    | 600                      | 553                       | Self-cooling                                                                                                                                                            |
| 10:30    | 600                      | 599                       |                                                                                                                                                                         |
| 11:00    | 600                      | 598                       |                                                                                                                                                                         |
| 11:30    | 600                      | 604                       |                                                                                                                                                                         |
| 12:00    | Stop                     | 599                       |                                                                                                                                                                         |

#### Table 2: Heating pattern of Shadguna Balijarita Makaradhwaja

preparation, mouth of glass bottle was sealed; furnace was switched off and subjected for self-cooling. Highest recorded temperature was 600°C.<sup>[16]</sup> Sublimed product was collected at neck of glass bottle [Figure 1]; it was powdered and used for further analysis [Figure 2]. The prepared *Shadguna Balijarita Makaradhwaja* was designated as SBM.

### Structural and chemical characterization of Makaradhwaja

Physicochemical analysis of prepared SBM was done in pharmaceutical laboratory, XRD, ICPOES, and FTIR of SBM were carried out for determination of structural characterization of SBM.

### **Observations**

#### Physicochemical analysis

SBM was found tasteless, odorless, smooth, and bright red colored on physical examination [Table 3].

#### Characterization by X-ray diffraction

Peaks of mercury sulfide were observed in XRD of SBM. No any extra diffraction peaks were observed. Structure of mercury sulfide was observed as hexagonal crystal and having empirical formula of HgS [Figure 3 and Table 4].

# Characterization by inductively coupled plasma optical emission spectrometry

Major and minor trace elements in SBM were analyzed by adopting ICPOES. Elements such as mercury, sulfur, gold, lead, arsenic and cadmium were estimated for characterization of SBM. Major elements such as mercury and sulfur were examined as 757700.0 ppm and 107760.0 ppm, respectively, in SBM. 12131 ppm quantity of gold was found present in SBM along with 7.58 ppm of lead whereas, arsenic and cadmium were not detected [Table 5].

# Characterization by Fourier transform infrared spectroscopy

FTIR spectra of the sample were taken in the region of 400–4000 cm<sup>-1</sup>. Large number of functional groups were observed. Sharp peaks were obtained at and around 742.34, 1112.67, 1385.65, 1632.95, 2341.25, 2923.84, 2850.48, and 3431.97 in SBM [Tables 6-8 and Figure 4].

### **Discussion**

Physical analysis showed that SBM is tasteless, odorless, and smooth as prescribed in *Bhasma* examination. It is having unique bright red color as mentioned for *Sindoora* in *Rasashastra*.

# Table 3: Organoleptic characters of Shadguna BalijaritaMakaradhwaja

| Parameter | SBM           |
|-----------|---------------|
| Taste     | Tasteless     |
| Color     | Bright orange |
| Odor      | Odorless      |
| Touch     | Smooth        |

SBM: Shadguna Balijarita Makaradhwaja

In XRD study, peaks only due to mercury sulfide with an empirical formula of HgS and hexagonal crystal structure were observed. Previous studies support this observation.<sup>[17-21]</sup> The presence of trace elements was not reflected in XRD pattern.



Figure 1: Sublimed product of Shadguna Balijarita Makaradhwaja



Figure 2: Powdered sample of Shadguna Balijarita Makaradhwaja

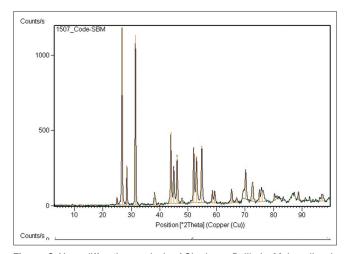



Figure 3: X-ray diffraction analysis of Shadguna Balijarita Makaradhwaja

| Khedekar, et al .: Charac | terization of | Shadguna E | Baliiarita . | Makaradhwaia |
|---------------------------|---------------|------------|--------------|--------------|
|                           |               |            |              |              |

| Table 4:       | Peaks observed i           | n X-ray diffracti | on analysis o    | of Shadguna     | Balijarita Ma  | akaradhwaja              |                   |                      |
|----------------|----------------------------|-------------------|------------------|-----------------|----------------|--------------------------|-------------------|----------------------|
| Pos.<br>(°2Th) | d-spacing (Å)              | Significance      | Rel.<br>Int. (%) | Height<br>(cps) | FWHM<br>(°2Th) | Crystallite<br>size (nm) | Lattice<br>strain | Crystal<br>structure |
| 9.3833         | 9.42547                    | 0.9156            | 1.08             | 8.96            | 0.492          | 103.58                   | 0.0262            | -                    |
| 12.3377        | 7.17427                    | 0.8002            | 1.06             | 5.5             | 0.7872         | 49.39                    | 0.0318            | Cubic                |
| 17.6603        | 5.02221                    | 1.0049            | 0.61             | 4.23            | 0.5904         | 46.39                    | 0.0166            | Orthorhombic         |
| 25.0168        | 3.55955                    | 1.1501            | 3.73             | 51.59           | 0.2952         | 66.55                    | 0.0058            | Hexagonal            |
| 26.7597        | 3.33153                    | 9.2186            | 100              | 1184.07         | 0.3444         | 53.58                    | 0.0063            | Orthorhombic         |
| 28.4084        | 3.14182                    | 3.2311            | 18.81            | 259.84          | 0.2952         | 59.16                    | 0.0051            | Monoclinic           |
| 31.4347        | 2.84592                    | 9.6638            | 95.53            | 1131.15         | 0.3444         | 46.26                    | 0.0053            | Orthorhombic         |
| 38.094         | 2.36235                    | 1.5186            | 6.85             | 81.08           | 0.3444         | 39.1                     | 0.0044            | Orthorhombic         |
| 39.6866        | 2.27114                    | 0.9621            | 0.77             | 10.67           | 0.2952         | 44.07                    | 0.0036            | Monoclinic           |
| 43.8604        | 2.06421                    | 6.235             | 45.27            | 469.02          | 0.3936         | 30.46                    | 0.0043            | Orthorhombic         |
| 44.8478        | 2.02104                    | 2.944             | 20.11            | 238.12          | 0.3444         | 34.21                    | 0.0036            | Orthorhombic         |
| 46.0544        | 1.97086                    | 4.7337            | 30.28            | 313.72          | 0.3936         | 29.32                    | 0.0040            | Orthorhombic         |
| 48.0774        | 1.89255                    | 1.3058            | 3.85             | 35.48           | 0.4428         | 25.22                    | 0.0043            | Hexagonal            |
| 51.9959        | 1.75877                    | 3.9557            | 30.09            | 356.31          | 0.3444         | 30.61                    | 0.0031            | Hexagonal            |
| 53.0249        | 1.72704                    | 4.6704            | 33.19            | 305.64          | 0.4428         | 23.48                    | 0.0039            | Monoclinic           |
| 54.8552        | 1.67367                    | 4.4593            | 36.13            | 374.36          | 0.3936         | 25.81                    | 0.0033            | Orthorhombic         |
| 58.5344        | 1.57694                    | 0.8069            | 5.01             | 83.11           | 0.246          | 39.58                    | 0.0019            | Tetragonal           |
| 59.3445        | 1.55733                    | 0.8379            | 8.14             | 84.35           | 0.3936         | 24.53                    | 0.0030            | Hexagonal            |
| 65.3364        | 1.42826                    | 3.1784            | 11.14            | 92.32           | 0.492          | 18.58                    | 0.0033            | Tetragonal           |
| 67.0724        | 1.39545                    | 1.0818            | 4.43             | 30.6            | 0.5904         | 15.28                    | 0.0039            | Orthorhombic         |
| 70.3171        | 1.3388                     | 3.3686            | 20.59            | 189.67          | 0.4428         | 19.91                    | 0.0027            | -                    |
| 72.766         | 1.29967                    | 2.6011            | 14.87            | 123.28          | 0.492          | 17.68                    | 0.0029            | Monoclinic           |
| 75.1569        | 1.26415                    | 0.8886            | 5.53             | 76.35           | 0.2952         | 29.11                    | 0.0017            | -                    |
| 76.0532        | 1.25147                    | 0.8466            | 13.64            | 70.66           | 0.7872         | 10.87                    | 0.0044            | -                    |
| 80.3368        | 1.19518                    | 0.8487            | 3.4              | 40.22           | 0.3444         | 24.46                    | 0.0018            | Hexagonal            |
| 88.7757        | 1.10211                    | 0.8837            | 3.94             | 54.38           | 0.2952         | 28.13                    | 0.0013            | -                    |
| 97.2237        | 1.02673                    | 1.0261            | 14.19            | 44.59           | 0.96           | 8.70                     | 0.0037            | Hexagonal            |
| Average pa     | rticle size and lattice st | train             |                  |                 |                | 34.96                    | 0.0060            |                      |

FWHM: Full width at half maximum

 Table 5: Results of inductively coupled plasma optical emission spectrometry analysis of Shadguna Balijarita

 Makaradhwaja

| Element      | Wavelength | Instrument detection limit (ppm) mg/L | Observed value (ppm) in SBM | Observed value (%) |
|--------------|------------|---------------------------------------|-----------------------------|--------------------|
| Gold (Au)    | 267.595    | 0.0310                                | 12131.0                     | 1.21               |
| Lead (Pb)    | 220.353    | 0.0420                                | 7.5845                      | Not detected       |
| Arsenic (As) | 193.696    | 0.0530                                | Not detected                | Not detected       |
| Sulfur (S)   | 181.975    | -                                     | 107,760.0                   | 10.78              |
| Mercury (Hg) | 253.652    | 0.0610                                | 757,700.0                   | 75.77              |
| Cadmium (Cd) | 228.802    | 0.002                                 | Not detected                | Not detected       |
| Total        |            |                                       |                             | 87.76              |

SBM: Shadguna Balijarita Makaradhwaja

It might be possible that trace elements were not present on the surface of crystal. XRD analysis of SBM showed its average particle size 34.96 nm which is of nanosize. This observation suggests that not only the *Bhasma* preparation procedures of Ayurvedic pharmaceutics are responsible for creating nanoparticles but also *Kupipakwa Rasa* preparation is responsible for the creation of such nano size medicines. SBM is found majorly in sulfide form which is considered as safe form of mercury; however, there are few peaks in XRD which represent minor oxide forms too. Whether they are solely or bound to herbal phytoconstituents or sulfide forms is not known and hence, it is difficult to interpret active role of oxide phase. SBM contains significant proportion of HgS which is dimorphic with two crystal forms. Red cinnabar ( $\alpha$ -HgS, Trigonal) is the form in which mercury is most commonly found in nature. Black, metacinnabar ( $\beta$ -HgS), is less common in nature and adopts the zinc blende crystal structure.<sup>[22]</sup> Under atmospheric pressure, mercuric oxide has two crystalline forms: one is called montroydite (HgO) (orthorhombic) and the second is analogous to the sulfide mineral

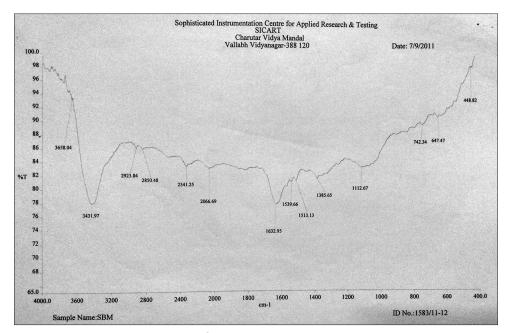



Figure 4: Fourier transform infrared spectroscopy analysis of Shadguna Balijarita Makaradhwaja

| Table 6: Fourier transform infrared | spectroscopy peaks | and functional | groups d | letected in | sample | Shadguna | Balijarita |
|-------------------------------------|--------------------|----------------|----------|-------------|--------|----------|------------|
| Makaradhwaja                        |                    |                |          |             |        |          |            |

| Bond | Type of bond               | Specific type of bond   | Standard absorption peak/cm (nm) | Observed peak in sample | Appearance                          |
|------|----------------------------|-------------------------|----------------------------------|-------------------------|-------------------------------------|
| С—Н  | Alkyl                      | Methyl                  | 1380/cm (7246 nm)                | 1385.65                 | Weak                                |
|      |                            | Methylene               | 2850/cm (3509 nm)                | 2850.28                 | Medium to strong                    |
|      |                            |                         | 2925/cm (3419 nm)                | 2923.84                 |                                     |
| С—Н  | Aromatic                   | Monosubstituted benzene | 700-750/cm (13,333-14,286 nm)    | 742.34                  | Strong                              |
| C-C  | With benzene ring          | Dienes                  | 1625/cm (6154 nm)                | 1632.95                 | Strong                              |
| 0—Н  | Alcohols, phenols          | Low concentration       | 3610-3670/cm (2725-2770 nm)      | 3658.04                 | Broad                               |
| N—H  | Primary amines             | Any                     | 3400-3500/cm (2857-2941 nm)      | 3431.97                 | Strong                              |
| C—N  | Aliphatic amines           | Any                     | 1020-1220/cm (8197-9804 nm)      | 1112.67                 | Often overlapped                    |
| C—N  | R-N-C (nitro compounds)    | Any                     | 2165-2110/cm (4739-4619 nm)      | 2066.69                 | Often overlapped                    |
| С—Х  | Chloroalkanes              | Any                     | 540-760/cm (13,158-18,519 nm)    | 647.47                  | Weak to medium                      |
| N—O  | Nitro compounds            | Aromatic                | 1520, 1350/cm (7407-6579 nm)     | 1513.13                 | Lower if conjugated                 |
| С—С  | C=C                        | Disubstituted alkynes   | 2190-2360/cm (4425-4566 nm)      | 2341.25                 | Very weak (often indistinguishable) |
| C=0  | Carboxylic acids/derivates | Carboxylates (salts)    | 1550-1610/cm (6211-6452 nm)      | 1539.66                 | Weak to medium                      |

# Table 7: Fourier transform infrared spectroscopy peaks obtained in Shadguna Balijarita Makaradhwaja

| Sample                                | Number<br>of peaks | Obtained peaks                                                                                                                  |  |  |  |
|---------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SBM                                   | 14                 | 448.82, 647.47, 742.34, 1112.67, 1385.65,<br>1513.13, 1539.66, 1632.95, 2066.69,<br>2341.25, 2850.28, 2923.84, 3431.97, 3658.04 |  |  |  |
| SBM: Shadguna Balijarita Makaradhwaja |                    |                                                                                                                                 |  |  |  |

cinnabar (hexagonal); Hg-O chains characterize both. Both these forms are detected in XRD of SBM. At pressures above 10 GPa (pressure at which octaoxygen forms at room temperature), both structures convert to a tetragonal form which is also detected in XRD.<sup>[23]</sup> The pressure above 10 GPa is near to room temperature, i.e. allowing proper cooling during *Kupipakwa* procedure which, forms tetragonal structure. This observation can be considered as parameter to know whether *Kupipakwa* formulations were collected after complete cooling or not. Orthorhombic and hexagonal structures are found majorly in SBM which is suggestive of mercury sulfate (HgSO<sub>4</sub> or HgO<sub>4</sub>S).

There was no perfect matching peak in JCPDS and NBS database related to SBM; hence, the correlations were done based on the nearest peak with average  $0.1-0.4^{\circ} 2^{\text{th}}$  difference. The presence of nanoparticle size and the proportion of orthorhombic and hexagonal crystal size can be further applied

|        | ogiono                                          |                                         |                                         |                                               |                   |
|--------|-------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------|
| Sample | Hydrogen stretching<br>region (3700 to 2700/cm) | Triple bond region<br>(2700 to 1950/cm) | Double bond region<br>(1950 to 1550/cm) | Fingerprint region<br>(1500 to 700/cm)        | Unknown<br>region |
| SBM    | 2850.28, 2923.84, 3431.97,<br>3658.04           | 2066.69, 2341.25                        | 1632.95                                 | 742.34, 1112.67, 1385.65,<br>1513.13, 1539.66 | 448.82,<br>647.47 |

| Table         8: Fourier transform infrared | spectroscopy | peaks of | sample | Shadguna | Balijarita | Makaradhwaja | obtained in |
|---------------------------------------------|--------------|----------|--------|----------|------------|--------------|-------------|
| different regions                           |              |          |        |          |            |              |             |

SBM: Shadguna Balijarita Makaradhwaja

for comparative estimation of *Samaguna*, *Dwiguna*, *Triguna* and *Shadguna Balijarita Makaradhwaja*.

In the present study, gold was observed 12131 ppm (1.2%) in sublimed product of SBM. It is the highest quantity of gold observed in finished product of all types of Makaradhwaja, reported till date. In previous studies of SBM prepared by Astasamskarita Parada by adopting different operating procedures observed 663.14 ppm,<sup>[20]</sup> 421.86 ppm,<sup>[21]</sup> and 5.99 ppm<sup>[24]</sup> gold content in sublimed product, which is too less than the present value. The observed difference may be due to variable in raw material, heating pattern, and procedure. In another study, 268 ppm<sup>[19]</sup> and 300.16 ppm<sup>[2]</sup> gold were observed in the sublimed product in Triguna Balijarita Makaradhwaja (TBM) in ICPOES study. For TBM, purified mercury and sulfur are taken in ratio 1:3 while in Shadguna Balijarita Makaradhwaja, it is 1:6. Rasashastra claims that, therapeutic efficacy of Shadguna Balijarana is more than Triguna Balijarana.

About 75.77% mercury and 10.78% sulfur were observed in SBM. XRD study revealed that SBM contains mercury sulfide (HgS). Previous researcher reported 81.50% and 10.96% quantity of mercury and sulfur respectively, in finished product of TBM.<sup>[2]</sup> Comparing both studies, quantity of mercury was found less in the present study. It might possibly be due to excess amount of sulfur used in the procedure which may evaporate mercury during sublimation. Possible change in combining ratio indicates toward the process of *Balijarana* and heating process. It might get more capability to retain sulfur along with other trace elements reported in ICPOES study. While arsenic and cadmium were not detected in SBM. The lead was detected in negligible amount, but the reason behind the presence of lead in the finished product is unknown.

FTIR study revealed that, SBM contains organic compounds and the study was also supported by previous work.<sup>[20]</sup> Identification of functional group is one of the important analytical measures to understand the chemical nature and possible chemical composition of a sample. FTIR is a well-known tool for detection of presence of functional groups or organic legends. Therefore, prepared sample SBM was analyzed using FTIR analysis which was done using FTIR spectra in the region of 450–3700 cm<sup>-1</sup>.

Stretching vibrations of C-H at 1385.65, 2850.28, and 2923.84 cm<sup>-1</sup> represent Alkyl group; however, C-H bond at the wavelength 742.34 cm<sup>-1</sup> is assigned to aromatic monosubstituted benzene. Medium to strong peak obtained at

1632.95 and 3431.97 cm<sup>-1</sup> are due to C-C and N-H stretching vibrations which are assigned to dienes with benzene ring and primary amines, respectively. Low concentration of alcohols and phenols has been detected by O-H bond vibration in the range of  $3610-3670 \text{ cm}^{-1}$  (2725–2770 nm). The multiple and slightly overlapped peaks obtained in the range  $1020-1220 \text{ cm}^{-1}$  and  $2165-2110 \text{ cm}^{-1}$  are representative of aliphatic amines and possible nitro compounds. Aromatic nitro compounds are also found at a peak (1513.13 cm<sup>-1</sup>). Two peaks obtained in triple bond region are due to C-C stretching vibrations of C=C and can be considered as indicators of disubstituted Alkynes; however, this prediction needs furthermore evaluation as obtained peak is very weak. A weak to medium peak obtained at 1539.66 cm<sup>-1</sup> is due to C=O and it represents carboxylic acids/derivatives, especially carboxylates (salts).

SBM samples showed the presence of large number of functional groups which were represented by 14 peaks. Among these peaks, 4 peaks were obtained in hydrogen stretching region (3700–2700 cm<sup>-1</sup>). Absorption peaks in this region of 3700–3100 cm<sup>-1</sup> are ordinary due to various O-H and N-H stretching vibrations, with the former tending to appear at higher wave numbers. Aliphatic C-H vibrations fall in between the region 3000 and 2850 cm<sup>-1</sup>. Most aliphatic compound has sufficient number of C-H bond to make this prominent peak. Two peaks were obtained in triple bond region (2700–1950 cm<sup>-1</sup>). There are few compounds which are responsible to create triple bond which is not a common phenomenon. Hence, obtained peak in this region has a significant value which can be taken as parameter for specific drug prepared by adopting specific procedure.

Only one peak was obtained in double-bond region (1950–1550 cm<sup>-1</sup>). The carbonyl stretching vibration is characterized by absorption through this region. Ketones, aldehydes, acids, amides, and carbonates have absorption peaks at around 1700 cm<sup>-1</sup>. Esters, chlorides and acid aldehydes tend to absorb at slightly higher wavelengths; that is 1770–1725 cm<sup>-1</sup>. Conjugation tends to lower the absorption peaks by about 20 cm<sup>-1</sup>. It is impossible to determine the type of carbonyl that is present solely based on absorption in this region; however, examination of additional spectral region may provide evidence needed for clear-cut identification.

There are five peaks obtained in fingerprint region  $(1500-700 \text{ cm}^{-1})$ . A small difference in the structure and constitution of a molecule result in significant changes in the distribution peaks in this region of the spectrum. Most single bonds give rise to absorption bands at these frequencies.

The C-O-C stretching vibration in ethers and esters are found at about 1200 cm<sup>-1</sup> and the C-Cl stretching vibration at 700–800 cm<sup>-1</sup>. Several inorganic groups such as sulfate, phosphate, nitrate, and carbonate also absorb at wave numbers below 1200 cm<sup>-1</sup>.

All observed peaks indicate the presence of organic compounds in samples of SBM. These may be new chemical entities formed due to unique method of drug processing. It can be interpreted that these organic functional groups were probably impregnated from the herbs used in processing. The organic nature of the drug represents its difference from artificial mercurial compounds as well as mercurial minerals.

These peaks indicate the presence of organic compounds in the drugs. For the purification of raw materials and levigation purpose, herbals were used in the procedure. It may be reason behind observed organic compounds in finished product. It proves definite role of purification (*Shodhana*) and levigation (*Bhavana*) in the preparation of *Rasashastra* medicines.

### Conclusion

*Shadguna Balijarita Makaradhwaja* is a tasteless, bright orange red-colored substance. Chemical characterization by ICPOES study shows that *Shadguna Balijarita Makaradhwaja* contains 12131 ppm of gold as major element along with mercury and sulfur. Structurally, it is mercury sulfide, which contains few organic compounds.

### Acknowledgment

We would like to thanks Ex- Director, Prof. MS Baghel, IPGT and RA, Gujarat Ayurved University, Jamnagar, Asso. Prof. Dr. Galib, Department of RS and BK, All India Institute of Ayurveda, New Delhi and Asst Prof Dr. Dhiraj Rajput for constant support and technical inputs to carry out this work.

### **Financial support and sponsorship**

This study was financially supported by IPGT and RA, Gujarat Ayurved University, Jamnagar.

### **Conflicts of interest**

There are no conflicts of interest.

### References

- Satyartha P, editor. Gopala Krishna, Rasendra Sara Sangraha, <sup>1</sup>/<sub>4</sub>. 1<sup>st</sup> ed. Varanasi: Krishnadas Academy; 1994. p. 5.
- Khedekar S, Ravishankar B, Prajapati PK. Role of Gandhaka Jarana in the Preparation of Makaradhwaja. PhD Thesis, IPGT & RA. Jamnagar: Gujarat Ayurved University; 2012.
- Mishra S, editor. Dhundhukanath, Rasendra Chintamani, 3/47- 49. Reprint. 1<sup>st</sup> ed. Varanasi: Chaukhamba Orientalia; 2006. p. 25.
- 4. Mishra S, editor. Govind Das Sen, Bhaishajya Ratnavali, Rasayana

Rogadhikara, 73/110-130. Reprint. 1st ed. Varanasi: Chaukhamba Surabharti Prakashan; 2007. p. 1121.

- Patgiri BJ, Ravishankar B, Prajapati PK. A toxicity study of Makaradhwaja prepared by Ashtasamskarita Parada. AYU Int Res J Ayurved 2004;27:55-62.
- Khedekar S, Rukkudin G, Ravishankar B, Prajapati P. Antidiabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats. J Intercult Ethnopharmacol 2016;5:162-7.
- 7. Patgiri B, Dhundi S, Ravishankar B, Prajapati PK. Immuno-modulatory effect of Makaradhwaja. IJPBA 2011;2:554-8.
- Sinyorita S, Ghosh CK, Chakrabarti A, Auddy B, Ghosh R, Debnath PK. Effect of Ayurvedic mercury preparation Makaradhwaja on geriatric canine – A preliminary study. Indian J Exp Biol 2011;49:534-9.
- Kumar G, Srivastava A, Sharma SK, Gupta YK. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats. Indian J Med Res 2014;139:610-8.
- Khedekar S, Galib R, Patgiri B, Prajapati PK. A scientific review of gold containing herbo-mineral preparation: Makaradhwaja. Int J Green Pharm 2015;9:7-11.
- Mishra S, editor. Govind Das Sen, Bhaishajya Ratnavali, Jwara Rogadhikara, 5/1214-1221. Reprint. 1<sup>st</sup> ed. Varanasi: Chaukhamba Surabharti Prakashan; 2007. p. 194.
- Parashara R, Krishna S. Hindi Commentary, Madhayam Khanda, Dhatushodahana Marana Prakarana, 11/20. 4<sup>th</sup> ed. Nagpur: Shree Baidyanath Ayurved Bhavan; 1994. p. 382.
- Gururaj Sharma Mishra VD, editor. Madhava Upadhyaya, Ayurveda Prakash, 2/75, commentary. Reprint. 1<sup>st</sup> ed. Varanasi: Chaukhambha Bharti Acadamy; 2007. p. 275.
- Mehta N, Patgiri B, Prajapati PK. Standard operating procedure of Hingulottha Parada. Int J Ayurveda Med 2010;2:27-36.
- Kulkarni DA, editor. Vagbhata, Rasaratnasamucchaya, 3/20. Reprint. 1<sup>st</sup> ed. New Delhi: Meherchanda Lachamandasa Publications; 2006. p. 45.
- Khedekar SB, Prajapati PK. Standard manufacturing procedure of Shadguna Balijarita Makaradhwaja. Ayu 2014;35:428-32.
- Prajapati PK, Joshi D, Dube GP, Kumar M, Prakash B. Pharmaceutical and Experimental Study on Makaradhwaja MD Dissertation. Varanasi: BHU; 1994.
- Prajapati PK, Jha CB. Study on Makaradhwaja. Ph.D Thesis. Varanasi: BHU; 1998.
- Khedekar S, Patgiri BJ, Ravishankar B, Prajapati PK. A Pharmaceutico-Pharmacoclinical Study of Makaradhwaja Prepared by Swarna Patra-Varkha and Bhasma Wsr to Madhumeha (Diabetes Mellitus). MD Dissertation, IPGT & RA. Jamnagar: Gujarat Ayurved University; 2009.
- Dhundhi S, Patgiri BJ, Ravishankar B, Prajapati PK. A Study of Shadguna Makaradhwaja prepared by Ashtasamskarita Parada and its study on Madhumeha' MD Dissertation, IPGT and RA, Jamnagar: Gujarat Ayurved University; 2011.
- Dhundhi S, Shukla VJ, Naria M, Prajapati PK. Safety profile of Shadguna Makaradhwaja prepared by Ashtasamskarita Parada. Ph.D Thesis. IPGT and RA, Jamnagar: Gujarat Ayurved University; 2014.
- Available from: https://en.wikipedia.org/wiki/Mercury\_sulfide. [Last accessed on 2015 Jul 02].
- Available from: https://en.wikipedia.org/wiki/Mercury (II)\_oxide. [Last accessed on 2015 Jul 02].
- 24. Charde V, Patgiri BJ, Shukla VJ, Naria M, Prajapati PK. A Study on Two Samples of Shadguna Makaradhwaja and their Comparative Effect on Type Diabetes Mellitus (Madhumeha). MD Dissertation, IPGT & RA, Jamnagar: Gujarat Ayurved University; 2015.

# हिन्दी सारांश

## षड्गुणबलिजारित मकरध्वज का भौतिक रासायनिक गुणधर्म निर्धारण – एक प्राथमिक अध्ययन

## संजय खेड़ेकर, प्रशांत बेदारकर, प्रदीप कुमार प्रजापति

मकरध्वज एक खनिज वानस्पतिक , प्रचलित वाजीकरण तथा रसायन गुणधर्मों वाला पारम्परिक औषधि योग है इसे शोधित स्वर्ण पारद तथा गंधक की विभिन्न मात्रा में बालुका यंत्र ( इलेक्ट्रिक आधुनिक मफल फरनेन्स) द्वारा क्रमशः आरोही तापक्रम से बनाया जाता है। मकरध्वज के मात्रत: प्रधान तथा गौण तत्वों को जानने हेतु इसके रासायनिक गुणधर्म निर्धारण की आवश्यकता है। प्रस्तुत अध्ययन षड्गुण बलिजारित मकरध्वज का प्राथमिक भौतिक एवं रासायनिक गुणधर्म निर्धारण करने हेतु किया गया जिसमें षड्गुण बलिजारित मकरध्वज का प्राथमिक भौतिक एवं रासायनिक गुणधर्म निर्धारण करने हेतु किया गया जिसमें षड्गुण बलिजारित मकरध्वज का स्वरूप संगठन तथा रासायनिक संगठन जानने हेतु विविध तकनीकों का प्रयोग किया गया जैसे – एक्सरे डिफ़्रक्शन-, इंडक्टिवली कपल्ड प्लाज्मा ऑप्टिकल इमीशन स्पेक्ट्रोस्कोपी, फ्यूरियर ट्रांसफार्म इंफ्रारेड स्पेक्ट्रोस्कोपी। परिणाम स्वरूप बलिजारित मकरध्वज में दशमलव भाग में लगभग १२१३९ भाग स्वर्ण, आय.सी.पी.ओ.ई.एस. अध्ययन पाया गया। एफ.टी.आई.आर. अध्ययन में कुछ जैविक रसायन पाये गए। निष्कर्षतः संगठन की दृष्टि से यह मर्क्युरिक सल्फाइड है जिसका रसायनिक सूत्र HgS है।