OCCURRENCE OF ARBUSCULAR MYCORRHIZAL FUNGI IN SOME MEDICINAL PLANTS OF KERALA

Abraham Mathew and Malathy M.R.	
P.G and Research Department of Botany	
St. Peters College, Kolenchery-682311, Kerala	
Receive : 12-2-2006	Accepted : 2-5-2006

ABSTRACT

The occurrence of mycorrhiza in 40 selected medicinal plants was studied. The percentage of mycorrhizal colonization in each of the plant was calculated. The colonization was found to be very less in four plants and very high in six plants. All others showed a moderate level of colonization. The present work suggests the use of mycorrhiza as a biofertilizer to enhance the growth and yield of medicinal plants.

INTRODUCTION

In India, a large number of medicinal plants occur in the wild state. With the growing importance of Ayurveda, it has become a necessity to cultivate these plants. However, the use of chemical fertilizers and pesticides has resulted in the reduction of quality of medicine. Hence the present strategy is to cultivate medicinal plants through organic farming techniques. Addition of biofertilizers can enhance the growth and provide resistance to the plant against microbial attack.

Arbuscular mycorrhizal fungi is a potent biofertilizer. It is known to control the deleterious effects of pathogenic microbes by chemical, physiological and morphological alterations in the host¹. It can also enhance plant growth by better uptake of nutrients especially phosphorous and enhance tolerance of plants towards drought and salt stress ^{2, 3, 4, 5}. Hazarika etal., $(2004)^6$ have reported the influence of AMF on growth and biomass production in *Mimosa* and *Crotalaria*.

The present study was undertaken to estimate the percentage of mycorrhizal colonization in the roots of some selected medicinal plants, so as to form a base for subsequent work on AMF as a biofertilizer for the commercial cultivation of these plants.

MATERIALS AND METHODS

The mycorrhizal colonization percentage in the root samples were estimated following the procedure of Phillips and Hayman, 1970⁷. The root samples were

cleaned off soil particles, cut in to 1cm bits and fixed in FAA for 24h. The roots were cleared by autoclaving with 10% KOH, washed with 1% HCl and stained with 0.05% Trypan blue in lactophenol. The roots were observed for the presence of mycelium, vesicles and arbuscules. The AMF colonization percentage was calculated as

	Number of root bits + ^{ve} for AMF infection	
AMF colonization percentage =		× 100
	Total number of root bits	
	investigated	

A minimum of 24 root bits from each sample was scanned to estimate the AMF colonization percentage.

RESULTS AND DISCUSSIONS

All the medicinal plants studied show AMF associations. The percentage of AMF colonization was found to be very less in Desmodium gangeticum, Cyclea Tabernamontana divaricata peltata. and Hedychium coronaria. A high level of colonization was noted in Physalis minima, Bacopa moneiri, Aporosa lindleyana, Chlorophytum borivillianum, Acorus calamus and Vetiveria zizanioides. All others showed a medium range of colonization.

In plants showing low and medium range of colonization, the AMF

infection can be enhanced by the addition of specific mycorrhizal fungi as biofertilizer. This would surely enhance the vigor of the plant and hence the yield. The application of mycorrhiza will also reduce the chance of pathogenic attack and hence medicines of superior quality without harmful pesticides and chemicals can be prepared.

Further studies have to be done in each of the medicinal plant so as to select the suitable mycorrhiza that can be applied as a biofertilizer.

SI.	Name of the plant	Family	Percentage of
No.			colonization
1	Cyclea peltata	Menispermaceae	15
2	Sida rhombifolia	Malvaceae	44
3	Oxalis corniculata	Oxalidaceae	49
4	Glycosmis pentaphylla	Rutaceae	38

5	Cissus quadrangularis	Vitaceae	44
6	Cardiospermum halicacabum	Sapindaceae	50
7	Schleichera trijuga	Sapindaceae	40
8	Moringa olefera	Moringaceae	72
9	Abrus precatorius	Papilionaceae	54
10	Desmodium gangeticum	Papilionaceae	14
11	Bauhinia racemosa	Caesalpiniaceae	44
12	Cassia fistula	Caesalpiniaceae	42
13	Acacia intsia	Mimosae	39
14	Adenanthera pavonina	Mimosae	69
15	Calicopteris floribunda	Combretaceae	62
16	Mussaenda frondosa	Rubiaceae	65
17	Plectronia rheedii	Rubiaceae	85
18	Elephantopus scaber	Asteraceae	77
19	Scaveola frutescens	Goodeniaceae	61
20	Plumbago rosea	Plumbaginaceae	71
21	Olea dioica	Oleaceae	72
22	Ichnocarpus frutescens	Apocynaceae	42
23	Tabernamontana divaricata	Apocynaceae	10
24	Thevetia neriifolia	Apocynaceae	46
25	Physalis minima	Solanaceae	97
26	Bacopa moneiri	Scrophulariaceae	95
27	Vitex negundo	Verbenaceae	50
28	Ocimum sanctum	Lamiaceae	47
29	Boerhaavia diffusa	Nyctaginaceae	51
30	Cinnamomum zeylanicum	Lauraceae	92
31	Aporosa lindleyana	Euphorbiaceae	99
32	Emblica officinalis	Euphorbiaceae	71
33	Tragia hispida	Euphorbiaceae	50
34	Alpinia galanga	Zingiberaceae	82
35	Curcuma aromatica	Zingiberaceae	78

36	Hedychium coronaria	Zingiberaceae	14
37	Chlorophytum borivillianum	Liliaceae	98
38	Gloriosa superba	Liliaceae	54
39	Acorus calamus	Araceae	99
40	Vetiveria zizanioides	Poaceae	97

REFERENCES

- 1. Sharma, M., Mittal, N and Mukerji, K.G. Fungi; Tool for plant disease management; In Microbes for Health, Wealth and Sustainable Environment, ed. Ajith Verma, Malhotra Publishing House, New Delhi, India, 241-294, (1997).
- 2. Mukerji, K.G., Jagpal, R., Bali, M. and Rani, R. The importance of mycorrhizal for roots; In Plants, Roots and Their Environment. eds. Mc Micheal and H. Person, Elsevier, Amsterdam, Holland, 290-308, (1991).
- 3. Powell, C.L.G. and Bagyaraj, D.J. Why all the interest; In VA mycorrhizal. eds. C.L.J. Powell and D.J. Bagyaraj, CRC Press Inc., Florida, U.S.A, 1-3, (1984).
- 4. Smith, S.E. and Read, D.J. Mycorrhizal Symbiosis, Academic Press, London, U.K. (1997).
- 5. Tarafdar, J.C. and Marschner, H. Phosphate activity in the rhizosphere and hyphosphereof VA mycorrhizal wheat supplied with inorganic and organic phosphorous, Soil Biol. Biochem., 26, (1994).
- 6. Hazarika, P., Talukdar, N.C. and Singh, Y.P. Arbuscular mycorrhizal fungi and soil amendments in restoration and re vegetation of coal mine overburden dumps of Margherita coal belt, Assam, Ecol.Environ. and Cons., 431-442, (2004).
- 7. Phillips, J.M. and Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc. 55, (1970).